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Background | Anonymous Systems and Ring Samplers

The Example of Anonymous Cryptocurrencies

Alice Blockchain/Everyone

Choose decoys .

tx :=

“I own one among (ring)

which contains 1 coin, and

I’m transferring 1 coin to Bob’s .”

π ← Prove(tx)

tx, π
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Background | Anonymous Systems and Ring Samplers

Ring Samplers

▶ U := set of all users

▶ R← Samp(i):
PPT algorithm, inputs signer i ∈ U, outputs a ring R such that i ∈ R ⊆ U

▶ Real signer i is hidden within set of users R

▶ For efficiency, typically |R| ≪ |U|

Dilemma

Anonymity increases with ring size, while efficiency decreases with ring size.
How to pick a middle ground?

▶ But wait, how to quantify “anonymity” in the first place?
(Not simply 1/|R|, since users could have different probability to be the real signer.)
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Background | Previous Work

Entropy-based Anonymity [Ronge et al. (2021)]

▶ Let S be signer distribution, R := Samp(S) be ring sampled.
Anonymity of a ring sampler measured by conditional min-entropy:

H∞(S|R) = − lg(Guess(S|R)),

Guess(S|R) := guessing probability of S conditioned on R, i.e. upper bound on
probability that adversary can guess S correctly given a sample of R

▶ Worst-case measure of amount of information (in bits) in S conditioned on R

▶ Higher H∞(S|R)⇔ More difficult to guess the real signer given the sampled ring

▶ Can be viewed as “local” anonymity of ring samplers
▶ Does not take into account how other users sample their rings
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Background | Previous Work

Some Classes of Ring Samplers

1. Uniform Samplers
▶ Sample k decoys uniformly randomly from set of all users

▶ Do not take signer distribution S into account

▶ Poor anonymity

2. Mimicking Samplers
▶ Sample k decoys according to signer distribution S
▶ Near-optimal anonymity

▶ Problem: requires to know signer distribution, which is hard in reality
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Background | Previous Work

Some Classes of Ring Samplers

3. Partitioning Samplers
▶ Partition the set of all users into chunks, sample k decoys uniformly randomly from

the chunk that the signer belongs to

▶ Near-optimal anonymity, assuming users in the same chunk have similar prob. to sign

Question

How about “global” anonymity?
How well can partitioning samplers resist “global” attacks (for certain ring size),
e.g. attacks based on graph-analysing ring memberships of all transactions?
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Our Work | Modelling Graph-based Deanonymisation

Transaction Graph

▶ Bipartite graph G = (U,R,E)

▶ Nodes U: set of users

▶ Nodes R ⊆ U: set of rings

▶ Edges E : ring membership,
(i , j) = user i in ring j

▶ Exists at least 1 maximum matching

▶ Wlog, assume (i , i) ∈ E for all i ∈ |R|

▶ Possible signer-signature assignments
= Maximum matchings of G
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Our Work | Modelling Graph-based Deanonymisation

Modelling Attack by Security Game

ExpA,Samp(U, |R|)
(G = (U,R,E),M)← GSamp(U, |R|)
(u∗, r∗)← A(G)

return ((u∗, r∗) ∈ M)

▶ U = set of users, R = set of rings, G = transaction graph,
M = maximum matching in G representing the true signer-signature assignment

▶ GSamp: takes ring sampler Samp as oracle and samples (G,M)

▶ Given G, adversary A wins if it outputs an edge in M

▶ Lower Pr
[
ExpA,Samp(U, |R|)

]
⇔ Higher anonymity under graph-based attacks
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Our Work | Modelling Graph-based Deanonymisation

What can Adversary do with G?

Given transaction graph G = (U,R,E),

▶ Dulmage-Mandelsohn(DM) decomposition

▶ Core (G) = (U,R,E ′), where E ′ ⊆ E is union
of all maximum matchings

▶ Runs in linear time of numbers of nodes and
edges, given one maximum matching is known

▶ Deanonymisation attack

▶ Rules out edges not in Core (G)

▶ G ̸= Core (G)⇒ Decreased anonymity
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Our Work | Results

Upper-bounding Pr
[
ExpA,Samp(U, |R|)

]
▶ A graph-analysing adversary can exclude edges in G not in Core (G)

Question 1

Relation between PrG←GSamp [G ̸= Core (G)] and Pr
[
ExpA,Samp(U, |R|)

]
?

▶ Trivial attack: to deanonymise a signer by random guessing, winning prob. = 1
k+1

▶ We proved this is optimal attack when G = Core (G) and with partitioning samplers:

Pr
[
ExpA,Samp(U, |R|)

]
≤ PrG←GSamp [G ̸= Core (G)] + 1

k+1

Question 2

How to upper-bound PrG←GSamp [G ̸= Core (G)] for Samp = partitioning sampler?
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Our Work | Results

Roadmap

Transaction Graph to Directed Graph

↓
Partitioning Samplers

↓
Binomial Random Digraphs

↓
Conjectures + Empirical Evidence
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Our Work | Results

Induced Directed Graph

▶ Transaction graph G = (U,R,E)

1
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2 3

U R

▶ Induced digraph of G:
id (G) = (U,F ) where F = {(i , j) : (i , j) ∈ E , i ̸= j}

▶ Biadjacency matrix of G ≈ Adjacency matrix of id (G)
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Our Work | Results

Finding Core (G)

Case 1: |U| = |R| (balanced)

▶ (i , i) is an edge of Core (G)

1
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1

2

3

1

2 3

U R

▶ Tassa (2014): For all i ̸= j ,

(i , j) is an edge of a strongly connected component in id (G)

⇔(i , j) is an edge of Core (G)

⇒ If id (G) is strongly connected (S.C.), then G = Core (G)

⇒ PrG←G [G ̸= Core (G)] ≤ PrG←G [id (G) not S.C.]
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Our Work | Results

Finding Core (G)

Case 2: |U| > |R| (imbalanced)

▶ Lower nodes = {i : i ∈ U, i > |R|}

▶ All edges found in case 1 ✓
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▶ Tassa (2014): Additionally,

(i , j) can be reached from a lower node in id (G)

⇒(i , j) is an edge of Core (G)

▶ Intuitively, the existence of lower nodes can significantly increases Pr [G = Core (G)]

▶ We proved that Pr [G ̸= Core (G)] is greatest when |R| = |U| (for fixed |U|)
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Our Work | Results

Roadmap

Transaction Graph to Directed Graph

↓
Partitioning Samplers

↓
Binomial Random Digraphs

↓
Conjectures + Empirical Evidence
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Our Work | Results

Induced Digraphs of Partitioning Samplers

▶ Recall: sample k decoys uniformly randomly within a chunk

▶ G := Transaction graph of a chunk, number of users = n
▶ Each of the n nodes of id (G) have in-degree k

▶ k incoming nodes are sampled uniformly randomly from the other n − 1 nodes

▶ k-in-degree regular random digraphs with n nodes =: Greg

▶ Probability being strongly connected?

→ The Scottish Book (problem 38): Open problem for over 40 years...?
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Binomial Random Digraphs =: Gbin

▶ Random digraph with n nodes, each directed edge exists with prob. p independently

▶ For each node, in-degree follows Bin(n − 1, p), with mean (n − 1)p

▶ Induced digraph by the following ring sampler:
▶ n users, each of the other n − 1 users chosen as decoy with prob. p independently

▶ Probability being strongly connected?

Graham and Pike (2008):

If p = p(n) = ln n+c
n for some constant c ∈ R,

lim
n→∞

Pr
G←Gbin

[G not S.C.] = 1− e−2e−c
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Our Work | Results

Conjecture 1 – Relating Greg and Gbin

Greg : Fix in-degree = k for each node

Gbin : Let p = k
n−1 , i.e. fix expected in-degree = k for each node

▶ Pr
G←Greg

[G not S.C.] ≤ Pr
G←Gbin

[G not S.C.]

▶ Intuitively true:
▶ For graphs from Greg, each node must be weakly connected to k other nodes

▶ For graphs from Gbin, nodes may be weakly connected to fewer nodes

▶ Holds for all n ≥ 16 for all k ’s tested
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Conjecture 2 – Upper Bound for Sampling from Gbin

▶ Recap: If p = p(n) = ln n+c
n for some c ∈ R,

lim
n→∞

Pr
G←Gbin

[G not S.C.] = 1− e−2e−c

▶ Write c = pn − ln n and p = k
n−1

▶ Conjectured closed-form upper bound:

Pr
G←Gbin

[G not S.C.] ≤ 1− e−2eln n− k
n−1 n

▶ Holds for all n ≥ 16 for all k ’s tested
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Empirical Evidence
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Figure: Pr [G not S.C.] against k under various n.
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Chaining Things Together

Consider transaction graph G of a chunk. Let n be chunk size, k be number of decoys.

Pr
G←GSamp

[G ̸= Core (G)] for any |R| ≤ n

≤ Pr
G←GSamp

[G ̸= Core (G)] for |R| = n

≤ Pr
G←GSamp

[id (G) not S.C.]

= Pr
G←Greg

[G not S.C.]

≤ Pr
G←Gbin

[G not S.C.] , p = k
n−1 (Conj.1)

≤1 − e−2eln n− k
n−1 n

(Conj.2)

Pr [G ̸= Core (G)] for the set of all users: apply union bound.
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Implication

▶ Recall:
Pr

[
ExpA,Samp(U, |R|)

]
≤ PrG←GSamp [G ̸= Core (G)] + 1

k+1

▶ If PrG←GSamp [G ̸= Core (G)] ≤ 1
k+1 , then a graph-analysing adversary is at most twice as

successful as with the trivial attack

▶ If Conjectures 1 and 2 hold, it suffices to set

k ≥ ln(2|U|) +
√

2 ln(2|U|),

i.e. set k to be logarithmic in number of users to resist graph-based attacks.
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Summary |

Summary

▶ Background of ring-signature-based anonymous systems and ring samplers

▶ Modelling anonymity of ring samplers by transaction graphs and security games

▶ Conjectures about strong connectivity of random directed graphs

▶ Provably secure ring size for partitioning samplers to resist graph-based
deanonymisation attacks

▶ E-print: ia.cr/2022/132

Ivy Woo
Aalto University, Finland
ivy.woo@aalto.fi Thank You!
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