On Defeating Graph Analysis of Anonymous Transactions

Christoph Egger, Russell W. F. Lai, Viktoria Ronge, Ivy K. Y. Woo, Hoover H. F. Yin

Aalto University, Finland

Content

Background

Anonymous Systems and Ring Samplers Previous Work

Our Work

Modelling Graph-based Deanonymisation Results

Content

Background

Anonymous Systems and Ring Samplers Previous Work

Our Work

Modelling Graph-based Deanonymisation Results

The Example of Anonymous Cryptocurrencies

Alice

Choose decoys 🕮 📾 🛍 .

"I own one among ಔ ಔ ಔ ಔ (ring) tx := which contains 1 coin, and

I'm transferring 1 coin to Bob's 🕮."

 $\pi \leftarrow \mathsf{Prove}(\mathsf{tx})$

tx, π

Blockchain/Everyone

- ► U := set of all users
- ▶ $\mathcal{R} \leftarrow \text{Samp}(i)$: PPT algorithm, inputs signer $i \in U$, outputs a ring \mathcal{R} such that $i \in \mathcal{R} \subseteq U$
- ▶ Real signer *i* is hidden within set of users \mathcal{R}

- ► U := set of all users
- ▶ $\mathcal{R} \leftarrow \text{Samp}(i)$: PPT algorithm, inputs signer $i \in U$, outputs a ring \mathcal{R} such that $i \in \mathcal{R} \subseteq U$
- ▶ Real signer *i* is hidden within set of users \mathcal{R}
- ▶ For efficiency, typically $|\mathcal{R}| \ll |U|$

- ► U := set of all users
- ▶ $\mathcal{R} \leftarrow \text{Samp}(i)$: PPT algorithm, inputs signer $i \in U$, outputs a ring \mathcal{R} such that $i \in \mathcal{R} \subseteq U$
- ▶ Real signer *i* is hidden within set of users \mathcal{R}
- For efficiency, typically $|\mathcal{R}| \ll |U|$

Dilemma

Anonymity increases with ring size, while efficiency decreases with ring size. How to pick a middle ground?

- ► U := set of all users
- ▶ $\mathcal{R} \leftarrow \text{Samp}(i)$: PPT algorithm, inputs signer $i \in U$, outputs a ring \mathcal{R} such that $i \in \mathcal{R} \subseteq U$
- ▶ Real signer *i* is hidden within set of users \mathcal{R}
- For efficiency, typically $|\mathcal{R}| \ll |U|$

Dilemma

Anonymity increases with ring size, while efficiency decreases with ring size. How to pick a middle ground?

But wait, how to quantify "anonymity" in the first place?

- ► U := set of all users
- ▶ $\mathcal{R} \leftarrow \text{Samp}(i)$: PPT algorithm, inputs signer $i \in U$, outputs a ring \mathcal{R} such that $i \in \mathcal{R} \subseteq U$
- ▶ Real signer *i* is hidden within set of users \mathcal{R}
- For efficiency, typically $|\mathcal{R}| \ll |U|$

Dilemma

Anonymity increases with ring size, while efficiency decreases with ring size. How to pick a middle ground?

 But wait, how to quantify "anonymity" in the first place? (Not simply 1/|R|, since users could have different probability to be the real signer.)

Entropy-based Anonymity [Ronge et al. (2021)]

Let S be signer distribution, R := Samp(S) be ring sampled. Anonymity of a ring sampler measured by conditional min-entropy:

 $H_{\infty}(\mathcal{S}|\mathcal{R}) = -\lg(\operatorname{Guess}(\mathcal{S}|\mathcal{R})),$

 $Guess(S|\mathcal{R}) :=$ guessing probability of S conditioned on \mathcal{R} , i.e. upper bound on probability that adversary can guess S correctly given a sample of \mathcal{R}

Entropy-based Anonymity [Ronge et al. (2021)]

Let S be signer distribution, R := Samp(S) be ring sampled. Anonymity of a ring sampler measured by conditional min-entropy:

 $H_{\infty}(\mathcal{S}|\mathcal{R}) = -\lg(\operatorname{Guess}(\mathcal{S}|\mathcal{R})),$

 $Guess(S|\mathcal{R}) :=$ guessing probability of S conditioned on \mathcal{R} , i.e. upper bound on probability that adversary can guess S correctly given a sample of \mathcal{R}

- ▶ Worst-case measure of amount of information (in bits) in S conditioned on R
- ▶ Higher $H_{\infty}(S|\mathcal{R}) \Leftrightarrow$ More difficult to guess the real signer given the sampled ring

Entropy-based Anonymity [Ronge et al. (2021)]

Let S be signer distribution, R := Samp(S) be ring sampled. Anonymity of a ring sampler measured by conditional min-entropy:

 $H_{\infty}(\mathcal{S}|\mathcal{R}) = -\lg(\operatorname{Guess}(\mathcal{S}|\mathcal{R})),$

 $Guess(S|\mathcal{R}) :=$ guessing probability of S conditioned on \mathcal{R} , i.e. upper bound on probability that adversary can guess S correctly given a sample of \mathcal{R}

- ▶ Worst-case measure of amount of information (in bits) in S conditioned on R
- ▶ Higher $H_{\infty}(S|\mathcal{R})$ \Leftrightarrow More difficult to guess the real signer given the sampled ring
- Can be viewed as "local" anonymity of ring samplers
 - Does not take into account how other users sample their rings

- 1. Uniform Samplers
 - Sample *k* decoys uniformly randomly from set of all users
 - ▶ Do not take signer distribution S into account
 - Poor anonymity

- 1. Uniform Samplers
 - Sample k decoys uniformly randomly from set of all users
 - Do not take signer distribution S into account
 - Poor anonymity
- 2. Mimicking Samplers
 - Sample k decoys according to signer distribution S
 - Near-optimal anonymity
 - Problem: requires to know signer distribution, which is hard in reality

- 3. Partitioning Samplers
 - Partition the set of all users into chunks, sample k decoys uniformly randomly from the chunk that the signer belongs to
 - Near-optimal anonymity, assuming users in the same chunk have similar prob. to sign

- 3. Partitioning Samplers
 - Partition the set of all users into chunks, sample k decoys uniformly randomly from the chunk that the signer belongs to
 - Near-optimal anonymity, assuming users in the same chunk have similar prob. to sign

Question

How about "global" anonymity? How well can partitioning samplers resist "global" attacks (for certain ring size), e.g. attacks based on graph-analysing ring memberships of all transactions?

Content

Background

Anonymous Systems and Ring Samplers Previous Work

Our Work

Modelling Graph-based Deanonymisation Results

► Bipartite graph $G = (U, R, E)$	Users U	Rings <i>R</i>
► Nodes <i>U</i> : set of users	1	
▶ Nodes $R \subseteq U$: set of rings	10	$\bigcirc 1$
	2〇	⊜2
	3 🔾	○3
	4 🔾	

5〇

- ▶ Bipartite graph G = (U, R, E)
- ▶ Nodes *U*: set of users
- ▶ Nodes $R \subseteq U$: set of rings
- Edges E: ring membership, (i, j) = user i in ring j

- Bipartite graph G = (U, R, E)
- Nodes U: set of users
- Nodes $R \subseteq U$: set of rings
- Edges E: ring membership, (i, j) = user i in ring j
- Exists at least 1 maximum matching
- ▶ Wlog, assume $(i, i) \in E$ for all $i \in |R|$

- Bipartite graph G = (U, R, E)
- Nodes U: set of users
- Nodes $R \subseteq U$: set of rings
- Edges E: ring membership, (i, j) = user i in ring j
- Exists at least 1 maximum matching
- ▶ Wlog, assume $(i, i) \in E$ for all $i \in |R|$
- Possible signer-signature assignments
 Maximum matchings of G

- Bipartite graph G = (U, R, E)
- Nodes U: set of users
- Nodes $R \subseteq U$: set of rings
- Edges E: ring membership, (i, j) = user i in ring j
- Exists at least 1 maximum matching
- ▶ Wlog, assume $(i, i) \in E$ for all $i \in |R|$
- Possible signer-signature assignments
 Maximum matchings of G

- Bipartite graph G = (U, R, E)
- Nodes U: set of users
- Nodes $R \subseteq U$: set of rings
- Edges E: ring membership, (i, j) = user i in ring j
- Exists at least 1 maximum matching
- ▶ Wlog, assume $(i, i) \in E$ for all $i \in |R|$
- Possible signer-signature assignments
 Maximum matchings of G

- Bipartite graph G = (U, R, E)
- Nodes U: set of users
- Nodes $R \subseteq U$: set of rings
- Edges E: ring membership, (i, j) = user i in ring j
- Exists at least 1 maximum matching
- ▶ Wlog, assume $(i, i) \in E$ for all $i \in |R|$
- Possible signer-signature assignments
 Maximum matchings of G

Modelling Attack by Security Game

$$\begin{split} & \frac{\mathsf{Exp}_{\mathcal{A},\mathsf{Samp}}(U,|R|)}{(G = (U,R,E), M) \leftarrow \mathcal{G}^{\mathsf{Samp}}(U,|R|)} \\ & (u^*,r^*) \leftarrow \mathcal{A}(G) \\ & \texttt{return} \ ((u^*,r^*) \in M) \end{split}$$

- U = set of users, R = set of rings, G = transaction graph,
 - M = maximum matching in G representing the true signer-signature assignment
- $\mathcal{G}^{\text{Samp}}$: takes ring sampler Samp as oracle and samples (G, M)
- Given G, adversary A wins if it outputs an edge in M

Modelling Attack by Security Game

$$\begin{split} & \frac{\mathsf{Exp}_{\mathcal{A},\mathsf{Samp}}(U,|R|)}{(G = (U,R,E), M) \leftarrow \mathcal{G}^{\mathsf{Samp}}(U,|R|)} \\ & (u^*,r^*) \leftarrow \mathcal{A}(G) \\ & \texttt{return} \ ((u^*,r^*) \in M) \end{split}$$

- U = set of users, R = set of rings, G = transaction graph, M = maximum matching in G representing the true signer-signature assignment
- $\mathcal{G}^{\text{Samp}}$: takes ring sampler Samp as oracle and samples (*G*, *M*)
- Given G, adversary A wins if it outputs an edge in M
- ▶ Lower Pr $[Exp_{A,Samp}(U, |R|)] \Leftrightarrow$ Higher anonymity under graph-based attacks

- Dulmage-Mandelsohn(DM) decomposition
 - ▶ Core (G) = (U, R, E'), where $E' \subseteq E$ is union of all maximum matchings

- Dulmage-Mandelsohn(DM) decomposition
 - ▶ Core (G) = (U, R, E'), where $E' \subseteq E$ is union of all maximum matchings

- Dulmage-Mandelsohn(DM) decomposition
 - ► Core (G) = (U, R, E'), where $E' \subseteq E$ is union of all maximum matchings
 - Runs in linear time of numbers of nodes and edges, given one maximum matching is known

- Dulmage-Mandelsohn(DM) decomposition
 - ► Core (G) = (U, R, E'), where $E' \subseteq E$ is union of all maximum matchings
 - Runs in linear time of numbers of nodes and edges, given one maximum matching is known
- Deanonymisation attack
 - Rules out edges not in Core (G)

- Dulmage-Mandelsohn(DM) decomposition
 - ► Core (G) = (U, R, E'), where $E' \subseteq E$ is union of all maximum matchings
 - Runs in linear time of numbers of nodes and edges, given one maximum matching is known
- Deanonymisation attack
 - Rules out edges not in Core (G)
 - $G \neq \text{Core}(G) \Rightarrow \text{Decreased anonymity}$

Upper-bounding $\Pr\left[\mathsf{Exp}_{\mathcal{A},\mathsf{Samp}}(U,|\mathcal{R}|)\right]$

► A graph-analysing adversary can exclude edges in G not in Core (G)

Question 1 Relation between $\Pr_{G \leftarrow \mathcal{G}^{Samp}} [G \neq Core(G)]$ and $\Pr[Exp_{\mathcal{A},Samp}(U,|R|)]$?

Upper-bounding $\Pr\left[\mathsf{Exp}_{\mathcal{A},\mathsf{Samp}}(U,|R|)\right]$

► A graph-analysing adversary can exclude edges in *G* not in Core(*G*)

Question 1	
$Relation \ between \ Pr_{G\leftarrow\mathcal{G}^{Samp}}\left[G\neqCore\left(G\right)\right] and \ Pr\left[Exp_{\mathcal{A},Samp}(U, R)\right]?$	

▶ Trivial attack: to deanonymise a signer by random guessing, winning prob. = $\frac{1}{k+1}$

Upper-bounding $\Pr\left[\mathsf{Exp}_{\mathcal{A},\mathsf{Samp}}(U,|R|)\right]$

► A graph-analysing adversary can exclude edges in *G* not in Core(*G*)

Question 1

Relation between $\Pr_{G \leftarrow \mathcal{G}^{Samp}} [G \neq Core(G)]$ and $\Pr [Exp_{\mathcal{A},Samp}(U,|R|)]$?

- ▶ Trivial attack: to deanonymise a signer by random guessing, winning prob. $=\frac{1}{k+1}$
- We proved this is optimal attack when G = Core(G) and with partitioning samplers:

$$\Pr\left[\mathsf{Exp}_{\mathcal{A},\mathsf{Samp}}(U,|R|)\right] \leq \Pr_{G \leftarrow \mathcal{G}^{\mathsf{Samp}}}\left[G \neq \mathsf{Core}\left(G\right)\right] + \frac{1}{k+1}$$

Upper-bounding $\Pr\left[\mathsf{Exp}_{\mathcal{A},\mathsf{Samp}}(U,|R|)\right]$

► A graph-analysing adversary can exclude edges in *G* not in Core (*G*)

Question 1

Relation between $\Pr_{G \leftarrow \mathcal{G}^{Samp}} [G \neq Core(G)]$ and $\Pr [Exp_{\mathcal{A},Samp}(U,|R|)]$?

- ▶ Trivial attack: to deanonymise a signer by random guessing, winning prob. = $\frac{1}{k+1}$
- We proved this is optimal attack when G = Core(G) and with partitioning samplers:

$$\Pr\left[\mathsf{Exp}_{\mathcal{A},\mathsf{Samp}}(U,|R|)\right] \leq \Pr_{G \leftarrow \mathcal{G}^{\mathsf{Samp}}}\left[G \neq \mathsf{Core}\left(G\right)\right] + \tfrac{1}{k+1}$$

Question 2

How to upper-bound $\Pr_{G \leftarrow \mathcal{G}^{Samp}} [G \neq Core(G)]$ for Samp = partitioning sampler?

Roadmap

Roadmap

Induced Directed Graph

- Fransaction graph G = (U, R, E)
- ▶ Induced digraph of *G*: id (*G*) = (*U*, *F*) where $F = \{(i, j) : (i, j) \in E, i \neq j\}$
- ▶ Biadjacency matrix of $G \approx$ Adjacency matrix of id (G)

Case 1: |U| = |R| (balanced)

Case 1: |U| = |R| (balanced)

 \blacktriangleright (*i*, *i*) is an edge of Core (*G*)

Case 1: |U| = |R| (balanced)

- \blacktriangleright (*i*, *i*) is an edge of Core (*G*)
- Tassa (2014): For all $i \neq j$,

U R 10 01 120 2 20 3

(i, j) is an edge of a strongly connected component in id (G) $\Leftrightarrow (i, j)$ is an edge of Core (G)

Case 1: |U| = |R| (balanced)

- \blacktriangleright (*i*, *i*) is an edge of Core (*G*)
- ► Tassa (2014): For all $i \neq j$,

U R 10 01 120 2 20 3

(i, j) is an edge of a strongly connected component in id (G) $\Leftrightarrow (i, j)$ is an edge of Core (G)

Case 1: |U| = |R| (balanced)

- \blacktriangleright (*i*, *i*) is an edge of Core (*G*)
- ► Tassa (2014): For all $i \neq j$,

(i, j) is an edge of a strongly connected component in id (G) \Leftrightarrow (i, j) is an edge of Core (G)

- \Rightarrow If id (G) is strongly connected (S.C.), then G = Core(G)
- $\Rightarrow \ \mathsf{Pr}_{G \leftarrow \mathcal{G}} \left[G \neq \mathsf{Core} \left(G \right) \right] \leq \mathsf{Pr}_{G \leftarrow \mathcal{G}} \left[\mathsf{id} \left(G \right) \ \mathsf{not} \ \mathsf{S.C.} \right]$

Case 2: |U| > |R| (imbalanced)

Case 2: |U| > |R| (imbalanced)

▶ Lower nodes = $\{i : i \in U, i > |R|\}$

Case 2: |U| > |R| (imbalanced)

- Lower nodes = $\{i : i \in U, i > |R|\}$
- All edges found in case 1

Case 2: |U| > |R| (imbalanced)

- ▶ Lower nodes = $\{i : i \in U, i > |R|\}$
- All edges found in case 1
- Tassa (2014): Additionally,

(i, j) can be reached from a lower node in id (G) $\Rightarrow (i, j)$ is an edge of Core (G)

Case 2: |U| > |R| (imbalanced)

- ▶ Lower nodes = $\{i : i \in U, i > |R|\}$
- All edges found in case 1
- Tassa (2014): Additionally,

(i, j) can be reached from a lower node in id (G) $\Rightarrow (i, j)$ is an edge of Core (G)

Case 2: |U| > |R| (imbalanced)

- Lower nodes = $\{i : i \in U, i > |R|\}$
- All edges found in case 1
- Tassa (2014): Additionally,

(i, j) can be reached from a lower node in id (G) $\Rightarrow (i, j)$ is an edge of Core (G)

▶ Intuitively, the existence of lower nodes can significantly increases Pr [G = Core (G)]

Case 2: |U| > |R| (imbalanced)

- Lower nodes = $\{i : i \in U, i > |R|\}$
- All edges found in case 1
- Tassa (2014): Additionally,

(i, j) can be reached from a lower node in id (G) $\Rightarrow (i, j)$ is an edge of Core (G)

- ▶ Intuitively, the existence of lower nodes can significantly increases Pr [G = Core (G)]
- ▶ We proved that $\Pr[G \neq \text{Core}(G)]$ is greatest when |R| = |U| (for fixed |U|)

Roadmap

- Recall: sample k decoys uniformly randomly within a chunk
- G := Transaction graph of a chunk, number of users = n
 - Each of the *n* nodes of id (*G*) have in-degree *k*
 - ▶ *k* incoming nodes are sampled uniformly randomly from the other n 1 nodes

- Recall: sample k decoys uniformly randomly within a chunk
- G := Transaction graph of a chunk, number of users = n
 - Each of the *n* nodes of id (*G*) have in-degree *k*
 - k incoming nodes are sampled uniformly randomly from the other n-1 nodes
 - ▶ *k*-in-degree regular random digraphs with *n* nodes =: \mathcal{G}^{reg}

- Recall: sample k decoys uniformly randomly within a chunk
- G := Transaction graph of a chunk, number of users = n
 - Each of the *n* nodes of id (*G*) have in-degree *k*
 - k incoming nodes are sampled uniformly randomly from the other n-1 nodes
 - ▶ *k*-in-degree regular random digraphs with *n* nodes =: \mathcal{G}^{reg}
- Probability being strongly connected?

- Recall: sample k decoys uniformly randomly within a chunk
- G := Transaction graph of a chunk, number of users = n
 - Each of the *n* nodes of id (*G*) have in-degree *k*
 - k incoming nodes are sampled uniformly randomly from the other n-1 nodes
 - ▶ *k*-in-degree regular random digraphs with *n* nodes =: \mathcal{G}^{reg}
- Probability being strongly connected?
 - \rightarrow The Scottish Book (problem 38): Open problem for over 40 years...?

Roadmap

- ▶ Random digraph with *n* nodes, each directed edge exists with prob. *p* independently
- For each node, in-degree follows Bin(n-1, p), with mean (n-1)p

- Random digraph with n nodes, each directed edge exists with prob. p independently
- For each node, in-degree follows Bin(n-1, p), with mean (n-1)p
- Induced digraph by the following ring sampler:
 - \triangleright *n* users, each of the other n-1 users chosen as decoy with prob. *p* independently

- Random digraph with n nodes, each directed edge exists with prob. p independently
- For each node, in-degree follows Bin(n-1, p), with mean (n-1)p
- Induced digraph by the following ring sampler:
 - ▶ *n* users, each of the other n 1 users chosen as decoy with prob. *p* independently
- Probability being strongly connected?

- Random digraph with n nodes, each directed edge exists with prob. p independently
- For each node, in-degree follows Bin(n-1, p), with mean (n-1)p
- Induced digraph by the following ring sampler:
 - \triangleright *n* users, each of the other n-1 users chosen as decoy with prob. *p* independently
- Probability being strongly connected?

Graham and Pike (2008):

If $p = p(n) = \frac{\ln n + c}{n}$ for some constant $c \in \mathbb{R}$,

$$\lim_{n\to\infty}\Pr_{G\leftarrow\mathcal{G}^{\text{bin}}}[G \text{ not S.C.}] = 1 - e^{-2e^{-c}}$$

Roadmap

 \mathcal{G}^{reg} : Fix in-degree = k for each node

 \mathcal{G}^{reg} : Fix in-degree = k for each node

 \mathcal{G}^{reg} : Fix in-degree = k for each node

▶
$$\Pr_{G \leftarrow \mathcal{G}^{reg}}[G \text{ not S.C.}] \leq \Pr_{G \leftarrow \mathcal{G}^{bin}}[G \text{ not S.C.}]$$

- Intuitively true:
 - For graphs from \mathcal{G}^{reg} , each node must be weakly connected to k other nodes
 - ▶ For graphs from \mathcal{G}^{bin} , nodes may be weakly connected to fewer nodes

 \mathcal{G}^{reg} : Fix in-degree = k for each node

▶
$$\Pr_{G \leftarrow \mathcal{G}^{reg}}[G \text{ not S.C.}] \leq \Pr_{G \leftarrow \mathcal{G}^{bin}}[G \text{ not S.C.}]$$

- Intuitively true:
 - For graphs from \mathcal{G}^{reg} , each node must be weakly connected to k other nodes
 - ▶ For graphs from *G*^{bin}, nodes may be weakly connected to fewer nodes
- Holds for all $n \ge 16$ for all k's tested

▶ Recap: If
$$p = p(n) = \frac{\ln n + c}{n}$$
 for some $c \in \mathbb{R}$,

$$\lim_{n\to\infty}\Pr_{G\leftarrow\mathcal{G}^{\text{bin}}}[G \text{ not S.C.}] = 1 - e^{-2e^{-c}}$$

▶ Recap: If
$$p = p(n) = \frac{\ln n + c}{n}$$
 for some $c \in \mathbb{R}$,

$$\lim_{n\to\infty}\Pr_{G\leftarrow\mathcal{G}^{\text{bin}}}[G \text{ not } S.C.] = 1 - e^{-2e^{-c}}$$

• Write
$$c = pn - \ln n$$
 and $p = \frac{k}{n-1}$

▶ Recap: If
$$p = p(n) = \frac{\ln n + c}{n}$$
 for some $c \in \mathbb{R}$,

$$\lim_{n\to\infty}\Pr_{G\leftarrow\mathcal{G}^{\text{bin}}}[G \text{ not S.C.}]=1-e^{-2e^{-c}}$$

• Write
$$c = pn - \ln n$$
 and $p = \frac{k}{n-1}$

Conjectured closed-form upper bound:

$$\Pr_{G \leftarrow \mathcal{G}^{\text{bin}}} \left[G \text{ not S.C.} \right] \le 1 - e^{-2e^{\ln n} - \frac{k}{n-1}n}$$

▶ Recap: If
$$p = p(n) = \frac{\ln n + c}{n}$$
 for some $c \in \mathbb{R}$,

$$\lim_{n\to\infty}\Pr_{G\leftarrow\mathcal{G}^{\text{bin}}}[G \text{ not } S.C.] = 1 - e^{-2e^{-c}}$$

• Write
$$c = pn - \ln n$$
 and $p = \frac{k}{n-1}$

Conjectured closed-form upper bound:

$$\Pr_{G \leftarrow \mathcal{G}^{\text{bin}}} \left[G \text{ not S.C.} \right] \le 1 - e^{-2e^{\ln n} - \frac{k}{n-1}n}$$

• Holds for all $n \ge 16$ for all k's tested

Empirical Evidence

Figure: Pr [G not S.C.] against k under various n.

Chaining Things Together

Consider transaction graph G of a chunk. Let n be chunk size, k be number of decoys.

$$\begin{split} & \Pr_{G \leftarrow \mathcal{G}^{\text{Samp}}} \left[G \neq \text{Core} \left(G \right) \right] & \text{for any } |R| \leq n \\ & \leq \Pr_{G \leftarrow \mathcal{G}^{\text{Samp}}} \left[G \neq \text{Core} \left(G \right) \right] & \text{for } |R| = n \\ & \leq \Pr_{G \leftarrow \mathcal{G}^{\text{Samp}}} \left[\text{id} \left(G \right) \text{ not S.C.} \right] \\ & = \Pr_{G \leftarrow \mathcal{G}^{\text{reg}}} \left[G \text{ not S.C.} \right] \\ & \leq \Pr_{G \leftarrow \mathcal{G}^{\text{bin}}} \left[G \text{ not S.C.} \right], \ p = \frac{k}{n-1} \quad (\text{Conj.1}) \\ & \leq 1 - e^{-2e^{\ln n - \frac{k}{n-1}n}} \quad (\text{Conj.2}) \end{split}$$

Pr [$G \neq$ Core (G)] for the set of all users: apply union bound.

Implication

▶ Recall:

$$\Pr\left[\mathsf{Exp}_{\mathcal{A},\mathsf{Samp}}(U,|\mathbf{\textit{R}}|)
ight] \leq \Pr_{G \leftarrow \mathcal{G}^{\mathsf{Samp}}}\left[G \neq \mathsf{Core}\left(G\right)
ight] + rac{1}{k+1}$$
Implication

▶ Recall:

$$\Pr\left[\mathsf{Exp}_{\mathcal{A},\mathsf{Samp}}(U,|R|)\right] \leq \Pr_{G \leftarrow \mathcal{G}^{\mathsf{Samp}}}\left[G \neq \mathsf{Core}\left(G\right)\right] + \tfrac{1}{k+1}$$

▶ If $\Pr_{G \leftarrow \mathcal{G}^{Samp}} [G \neq \text{Core}(G)] \leq \frac{1}{k+1}$, then a graph-analysing adversary is at most twice as successful as with the trivial attack

Implication

Recall:

$$\Pr\left[\mathsf{Exp}_{\mathcal{A},\mathsf{Samp}}(U,|R|)\right] \leq \Pr_{G \leftarrow \mathcal{G}^{\mathsf{Samp}}}\left[G \neq \mathsf{Core}\left(G\right)\right] + \tfrac{1}{k+1}$$

- ▶ If $\Pr_{G \leftarrow \mathcal{G}^{Samp}} [G \neq \text{Core}(G)] \leq \frac{1}{k+1}$, then a graph-analysing adversary is at most twice as successful as with the trivial attack
- If Conjectures 1 and 2 hold, it suffices to set

$$k \geq \ln(2|U|) + \sqrt{2\ln(2|U|)},$$

i.e. set *k* to be logarithmic in number of users to resist graph-based attacks.

Summary

- Background of ring-signature-based anonymous systems and ring samplers
- Modelling anonymity of ring samplers by transaction graphs and security games
- Conjectures about strong connectivity of random directed graphs
- Provably secure ring size for partitioning samplers to resist graph-based deanonymisation attacks
- E-print: ia.cr/2022/132

Ivy Woo
Aalto University, Finland
ivy.woo@aalto.fi

Thank You!

References

- Viktoria Ronge, Christoph Egger, Russell W. F. Lai, Dominique Schröder, and Hoover H. F. Yin. Foundations of ring sampling. Proceedings on Privacy Enhancing Technologies, 3:265–288, 2021
- Tamir Tassa. Finding all maximally-matchable edges in a bipartite graph. Theoretical Computer Science, 423:50–58, 2012
- R. Daniel Mauldin. The Scottish book: mathematics from the Scottish Café, with selected problems from the new Scottish Book.
 Birkhäuser, 2015
- Alasdair J. Graham and David A. Pike. A note on thresholds and connectivity in random directed graphs. *Atl. Electron. J. Math*, 3(1):1–5, 2008
- Ilona Palásti. On the strong connectedness of directed random graphs. Studia Sci. Math. Hungar, 1:205–214, 1966
- Saravanan Vijayakumaran. Analysis of cryptonote transaction graphs using the dulmage-mendelsohn decomposition. Cryptology ePrint Archive, Report 2021/760, 2021