

ulm university universität **UUUIM** 



Seminar - Special Aspects of Insurance Mathematics

Ivy Woo | February 9, 2020 | Institute of Insurance Science

Negative Correlation between Gompertz Parameters

## Content

#### Gompertz / Gompertz-Makeham Model

#### Strehler-Mildvan Correlation

GM2D Plot

Fitting Human Data

# Content

#### Gompertz / Gompertz-Makeham Model

Strehler-Mildvan Correlation

GM2D Plot

Fitting Human Data

# **Mortality Models**

Gompertz Model (GM):

$$\mu(t) = \mu_0 e^{\gamma t}$$

Gomertz-Makeham Model (GMM):

$$\mu(t) = C + \mu_0 e^{\gamma t}$$

- Parameters' meaning:
  - $\mu_0$  : initial resistance to causes of deaths / initial vitality
  - $\gamma$  : rate of age-dependent decline in vitality
  - C : age-independent component of total mortality (Makeham component)

# Content

#### Gompertz / Gompertz-Makeham Model

## Strehler-Mildvan Correlation

GM2D Plot

Fitting Human Data

#### Paper

- Strehler, B. L., & Mildvan, A. S. (1960). General theory of mortality and aging. Science, 132(3418), 14-21.
- Proposes a negative linear relationship between  $\log \mu_0$  and  $\gamma$  from the Gompertz model
- Since then such negative correlation is termed as the Strehler-Mildvan Correlation (SMC)

# **Terminologies**

Vitality V(t):

Capacity of an organism to stay alive at certain time t.

Attrition coefficient B(t): The fractional loss each year of original vitatlity V<sub>0</sub>, which is the sum of attritions due to normal aging b and environmental factors f(D(t)), i.e.

$$V(t) = V_0[1 - B(t) \cdot t]$$
 and  $B(t) = b + f(D(t))$ 

D(t) : some measure of the relative deleteriousness of an environment.

# **Terminologies**

 Maxwell-Boltzmann distribution: A distribution used in Physics for describing particle speeds in idealized gases

$$\frac{n}{n_t} = k \left(\frac{E}{RT}\right)^{\frac{1}{2}} e^{-\frac{E}{RT}} =: K e^{-\frac{E}{RT}}$$

- k : Boltzmann constant
- T : absolute temperature, R : gas constant
- E : energy of a state of molecular system
- n : number of molecules with energy  $\geq E$
- *n*<sub>t</sub> : total number of molecules

# Postulates

 An organism has a certain maximum capacity to restore initial conditions after a "challenge".
 Death occurs when rate to restore original state is less than that demanded to overcome the challenge.

$$\mu(t) = \boldsymbol{C} \cdot \boldsymbol{X}(t)$$

C : total number of challenges per unit time

X(t) : fraction of challenges greater than or equal to V(t)

2. Magnitude of challenges follows the Maxwell-Boltzmann distribution.

$$X(t) = K' e^{\frac{-V(t)}{\epsilon D(t)}}$$

where  $K' = \frac{K}{C}$ ,  $\epsilon$  is some constant such that  $\frac{-V(t)}{\epsilon D(t)}$  is unitless

# **Postulates**

 An organism has a certain maximum capacity to restore initial conditions after a "challenge".
 Death occurs when rate to restore original state is less than that demanded to overcome the challenge.

$$\mu(t) = \boldsymbol{C} \cdot \boldsymbol{X}(t)$$

*C* : total number of challenges per unit time

X(t) : fraction of challenges greater than or equal to V(t)

2. Magnitude of challenges follows the Maxwell-Boltzmann distribution.

$$X(t) = K' e^{\frac{-V(t)}{\epsilon D(t)}}$$

where  $K' = \frac{K}{C}$ ,  $\epsilon$  is some constant such that  $\frac{-V(t)}{\epsilon D(t)}$  is unitless

# Strehler-Mildvan Correlation

Suppose mortality follows the Gompertz law μ(t) = μ<sub>0</sub>e<sup>γt</sup>. After manipulating terms, one finds B(t) = B is constant and gets

$$\log \mu_0 - \log K = -\gamma/B$$

 $\Rightarrow$ Implies linear negative correlation between log  $\mu_0$  and  $\gamma$ 

A linear negative correlation is observed from analysis on human data, which supports the proposed theory

# Content

## Gompertz / Gompertz-Makeham Model

#### Strehler-Mildvan Correlation

#### GM2D Plot

Fitting Human Data

Paper

- Golubev, A. (2019). A 2D analysis of correlations between the parameters of the Gompertz–Makeham model (or law?) of relationships between aging, mortality, and longevity. Biogerontology, 20(6), 799-821.
- By visualizing the Gompertz parameters in a semi-log graph, termed as the "Gompetz Model 2D (GM2D) Plot", the author argues what the reasons for the negative correlation between parameters are.

# **Recent Propositions**

- Possible reasons for the SMC:
  - Due to noisiness of data / sampling error, "degenerate manifold of Gompertz fit" 1
  - Changes in the age-independent component C<sup>2,3</sup>
  - Compensation Effect of Mortality (CEM): Real trade-off between initial vitality and rate of decline in vitality

Artifacts

- 1 Tarkhov, A. E., Menshikov, L. I., & Fedichev, P. O. (2017). Strehler-Mildvan correlation is a degenerate manifold of Gompertz fit. Journal of theoretical biology, 416, 180-189.
- 2 Gavrilov, L. A., & Gavrilova, N. S. (1991). The biology of life span: a quantitative approach. New York/ Chur Switzerland Harwood Academic, New York.
- 3 Gavrilov, L. A., & Gavrilova, N. S. (2001). The reliability theory of aging and longevity. Journal of theoretical Biology, 213(4), 527-545.

## **Reference lines**

## Isoage line:

all pairs of  $\mu_{\rm 0}$  and  $\gamma$  on the same isoage line imply the same life expectancy under GM  $^{\rm 1}$ 

#### SMC line:

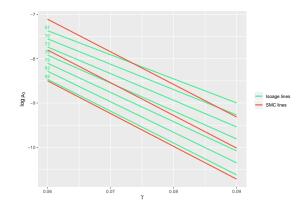
regression line from applying GM to data generated by GMM upon varying *C*  $\Rightarrow$ the negative correlation that would be observed when there is no change in  $\mu_0$  and  $\gamma$  but a change in *C* 

1 Life expectancy from Gompertz model (Tarkhov et al. (2017)): Mean age  $= \frac{\exp(e^{\Lambda})}{\gamma} \left( -0.577 + \Lambda - \sum_{k=1}^{\infty} \frac{(-e^{-\Lambda})^k}{k(k!)} \right)$  where  $\Lambda = \log \frac{\gamma}{\mu_0}$ 

## **Reference lines**

#### Isoage line:

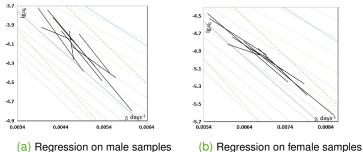
all pairs of  $\mu_{\rm 0}$  and  $\gamma$  on the same isoage line imply the same life expectancy under GM  $^{\rm 1}$ 


#### ► SMC line:

regression line from applying GM to data generated by GMM upon varying C

 $\Rightarrow$  the negative correlation that would be observed when there is no change in  $\mu_0$  and  $\gamma$  but a change in *C* 

1 Life expectancy from Gompertz model (Tarkhov et al. (2017)): Mean age  $= \frac{\exp(e^{\Lambda})}{\gamma} \left( -0.577 + \Lambda - \sum_{k=1}^{\infty} \frac{(-e^{-\Lambda})^k}{k(k)} \right)$  where  $\Lambda = \log \frac{\gamma}{\mu_0}$ 


#### Illustration of reference lines



SMC line slope > lsoage line slope (in absolute term)

### Analysis - Examples

Golubev (2019) figures 7A and 7B :



- Male: slope of regression > SMC line slope in most cases ⇒CEM is implied, negative correlation is not artifact
- ► Female: slope of regression ≈ isoage line slope ⇒Nothing more than artifact is seen

# Analysis - Examples

Golubev (2019) figure 8(JL) :

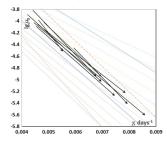



Figure: Vectors directing from males to females

- All vectors are directing from top left to bottom right (which is not implied by the artifacts of Gompertz fit)
- ⇒ Implies CEM is in effect: females feature higher initial vitality which is associated with its faster rate of decline

# Content

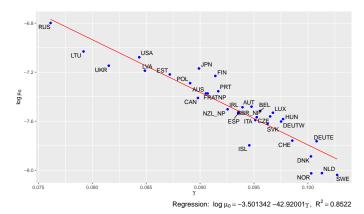
# Gompertz / Gompertz-Makeham Model

Strehler-Mildvan Correlation

GM2D Plot

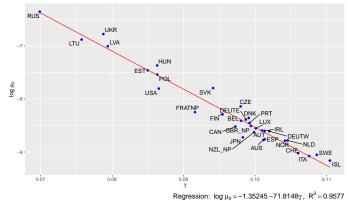
Fitting Human Data

# Human Mortality


- In Golubev's paper:
  - "Rectangularization" is observed in human mortality experience according to other literature
  - CEM is proposed to be a possible reason for this
- We do the same kind of analysis on human mortality data from the HMD website

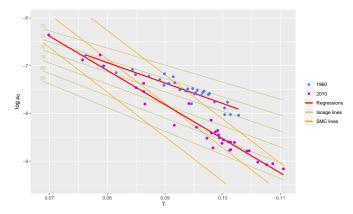
## Data

- R package "MortalityLaws"
  - downloads data from HMD website
  - estimates μ<sub>0</sub> and γ by minimizing certain loss function, here chosen to be


     -[Dx · log(estimated value) - Ex · estimated value]
     where Dx = Death counts, Ex = Population exposed to risk
- Age range 25-90
- 32 countries from Europe, North America, Asia and Australia

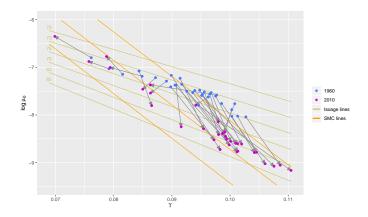
#### GM2D plot for 32 countries in 1960




Negative correlation observed

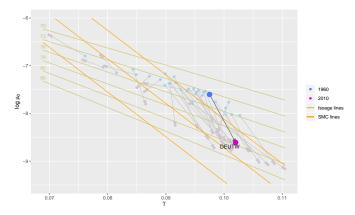
#### GM2D plot for 32 countries in 2010




- Negative correlation observed
- Slope becomes steeper

## Comparison from 1960 to 2010




- Significant improvement in life expectancy
- ▶ 1960 : regression slope ≈ isoage slope 2010 : isoage slope < regression slope < SMC slope</p>

### Comparison from 1960 to 2010



Change is not unidirectional

#### West Germany from 1960 to 2010



- Life expectancy increases from 73 to 82
- Rightward-downward trend with slope > SMC line slope ⇒CEM is implied for West Germany



# Thank you!