

Seminar - Insurance Mathematics

Ivy Woo | May 17, 2019 | Institute of Insurance Science

Optimal retirement income tontines Moshe A. Milevsky, Thomas S. Salisbury

May 17, 2019

Content

- What is Tontine?
- Proposition
- **Mathematical Proofs**
- Numerical Examples
- Outlook
- Limitations

Content

- What is Tontine?
- Proposition
- **Mathematical Proofs**
- **Numerical Examples**
- Outlook
- Limitations

What is Tontine?

- A product to **pool longevity risk** of a group of people → retirement income product
- Sponsor, e.g. insurance company, is not exposed to any longevity risk
- Pool of participants bears the risk entirely

Example:

- ► 400 participants, each contributes €100, interest 4%
- yearly interest 400 × 100 × 4% = €1600 split among surviving participants
 - ▷ all survive: each receives \in 4
 - ▷ 40 survive: each receives €40

Brief History about Tontines

- Notable tontines in history:
 - first tontine: Lorenzo de Tonti, invented in 1650s, implemented in 1670 in Holland
 - 1693 in England by King William III
 - 1790 in U.S.: Hamilton's Tontine Proposal
- Europe: lost popularity by 1850s
- U.S.: popular in late-19th century; banned since 1910
- traditional structure: fixed guaranteed payout rate

Content

What is Tontine?

Proposition

- **Mathematical Proofs**
- **Numerical Examples**
- Outlook
- Limitations

Proposition

A **Tontine with properly-constructed payout** can result in **Expected Lifetime Utility** comparable to that of a Life Annuity, which therefore is reasonable to exist in nowadays' retirement insurance market.

Content

- What is Tontine?
- Proposition
- **Mathematical Proofs**
- **Numerical Examples**
- Outlook
- Limitations

Approach

For both life-long Annuities and Tontines:

- Construct function for discounted expected lifetime utilities based on a payout function dependent on t
- Assume a constraint on the payout function
- Find optimal payout function
- → Compare Utilities under optimal payout

Approach

For both life-long Annuities and Tontines:

- Construct function for discounted expected lifetime utilities based on a payout function dependent on t
- Assume a constraint on the payout function
- Find optimal payout function (Euler-Lagrange theorem)
- → Compare Utilities under optimal payout

Approach

For both life-long Annuities and Tontines:

- Construct function for discounted expected lifetime utilities based on a payout function dependent on t
- Assume a constraint on the payout function
- Find optimal payout function (Euler-Lagrange theorem)
- → Compare Utilities under optimal payout

maximize:
$$\int_{x_1}^{x_2} F(x, y, y') dx$$

constraint:
$$\int_{x_1}^{x_2} G(x, y, y') dx = k$$
$$\Rightarrow \frac{\partial}{\partial y} (F + \lambda G) - \frac{d}{dt} \left[\frac{\partial}{\partial y'} (F + \lambda G) \right] = 0$$

▶ Payout function =: c(t)

Payout function =: c(t)

Discounted expected utilities

$$= E\left[\int_0^{\zeta} e^{-rt} u(c(t)) dt\right] = \int_0^{\infty} e^{-rt} p_x u(c(t)) dt$$

- **Payout** function =: c(t)
- Discounted expected utilities

$$= E\left[\int_0^{\zeta} e^{-rt} u(c(t)) dt\right] = \int_0^{\infty} e^{-rt} p_x u(c(t)) dt$$

• Payout constraint:
$$\int_0^\infty e^{-rt} p_x c(t) dt = 1$$

- Payout function =: c(t)
- Discounted expected utilities

$$= E\left[\int_0^{\zeta} e^{-rt} u(c(t)) dt\right] = \int_0^{\infty} e^{-rt} p_x u(c(t)) dt$$

• Payout constraint:
$$\int_0^\infty e^{-rt} {}_t p_x c(t) dt = 1$$

$$\stackrel{\text{Euler}}{\Longrightarrow} \text{Optimal payout } c(t) = \left[\int_0^\infty e^{-rt} p_x dt\right]^{-1} =: c_0$$

- Number of initial subscribers =: n
- Random number of live subscribers =: N(t)
- Given a live individual, assume number of other live subscribers N(t) − 1 ~ Bin(n − 1, tp_x)

- Number of initial subscribers =: n
- Random number of live subscribers =: N(t)
- Given a live individual, assume number of other live subscribers N(t) − 1 ~ Bin(n − 1, tp_x)
- Payout function =: d(t)

- Number of initial subscribers =: n
- Random number of live subscribers =: N(t)
- Given a live individual, assume number of other live subscribers N(t) − 1 ~ Bin(n − 1, tp_x)

• Payout function
$$=: d(t)$$

Discounted expected utilities

$$= E\left[\int_{0}^{\zeta} e^{-rt} u\left(\frac{nd(t)}{N(t)}\right) dt\right]$$

=
$$\int_{0}^{\infty} e^{-rt} p_{x} \sum_{k=0}^{n-1} {\binom{n-1}{k}} p_{x}^{k} (1-tp_{x})^{n-1-k} u\left(\frac{nd(t)}{k+1}\right) dt$$

• Payout constraint:
$$\int_0^\infty e^{-rt} d(t) dt = 1$$

• Payout constraint:
$$\int_0^\infty e^{-rt} d(t) dt = 1$$

$$\stackrel{\text{Luler}}{\Longrightarrow}$$
 Optimal payout $d(t) = D_u(tp_x)$,

which $D_u(p)$ satisfies

I

$$p\sum_{k=0}^{n-1} \binom{n-1}{k} p^k (1-p)^{n-1-k} \frac{n}{k+1} u' \left(\frac{nD_u(p)}{k+1}\right) = \lambda$$

and $\boldsymbol{\lambda}$ is chosen such that the payout constraint is satisfied.

In case of Constant Relative Risk Aversion (CRRA):

$$u(c) = \begin{cases} c^{1-\gamma}/(1-\gamma) & \text{if } \gamma \neq 1\\ \log c & \text{if } \gamma = 1 \end{cases}$$

In case of Constant Relative Risk Aversion (CRRA):

$$u(c) = \begin{cases} c^{1-\gamma}/(1-\gamma) & \text{if } \gamma \neq 1\\ \log c & \text{if } \gamma = 1 \end{cases}$$

Optimal payout: $D_{n,\gamma}^{OT}(tp_x) = D_{n,\gamma}^{OT}(1)\beta_{n,\gamma}(tp_x)^{1/\gamma}$ where $\beta_{n,\gamma}(p) = p \cdot E\left[\left(\frac{n}{N(p)}\right)^{1-\gamma}\right], N(p) - 1 \sim Bin(n-1,p)$ $D_{n,\gamma}^{OT}(1) = \left[\int_{0}^{\infty} e^{-rt}\beta_{n,\gamma}(tp_x)^{1/\gamma}dt\right]^{-1}$

Annuity:

$$U_{\gamma}^{\mathsf{A}} = \frac{1}{1-\gamma} \left(\int_{0}^{\infty} e^{-rt} p_{\mathsf{X}} dt \right)^{\gamma}$$

Tontine:

$$U_{n,\gamma}^{OT} = \frac{1}{1-\gamma} \left(\int_0^\infty e^{-rt} \beta_{n,\gamma} ({}_t p_x)^{1/\gamma} dt \right)^{\gamma}$$

Annuity:

$$U_{\gamma}^{A} = \frac{1}{1-\gamma} \left(\int_{0}^{\infty} e^{-rt} p_{X} dt \right)^{\gamma}$$

Tontine:

$$\beta_{n,\gamma}(p) \begin{cases} < p^{\gamma} & \text{if } 0 < \gamma < 1 \\ > p^{\gamma} & \text{if } 1 < \gamma \end{cases}$$

$$U_{n,\gamma}^{OT} = \frac{1}{1-\gamma} \left(\int_0^\infty e^{-rt} \beta_{n,\gamma} ({}_t p_x)^{1/\gamma} dt \right)^{\gamma}$$

Annuity:

$$U_{\gamma}^{A} = \frac{1}{1 - \gamma} \left(\int_{0}^{\infty} e^{-rt} p_{x} dt \right)^{\gamma}$$

$$\beta_{n,\gamma}(p) \begin{cases} < p^{\gamma} & \text{if } 0 < \gamma < 1 \\ > p^{\gamma} & \text{if } 1 < \gamma \end{cases}$$

Tontine:

$$U_{n,\gamma}^{OT} = \frac{1}{1-\gamma} \left(\int_0^\infty e^{-rt} \beta_{n,\gamma} ({}_t p_x)^{1/\gamma} dt \right)^\gamma$$

⇒ A Tontine always has expected utility smaller than that of an Annuity.

E.g. Capital reserves, risk management costs...

E.g. Capital reserves, risk management costs...

 \rightarrow A fraction δ of initial deposits is deducted as funding.

E.g. Capital reserves, risk management costs...

 \rightarrow A fraction δ of initial deposits is deducted as funding.

Utility of Loaded Annuity:

$$U_{\gamma}^{A} = \frac{(1-\delta)^{1-\gamma}}{1-\gamma} \left(\int_{0}^{\infty} e^{-rt} p_{x} dt \right)^{\gamma}$$

E.g. Capital reserves, risk management costs...

 \rightarrow A fraction δ of initial deposits is deducted as funding.

Utility of Loaded Annuity:

$$U_{\gamma}^{\mathsf{A}} = \frac{(1-\delta)^{1-\gamma}}{1-\gamma} \left(\int_{0}^{\infty} e^{-rt} p_{\mathsf{X}} dt \right)^{\gamma}$$

Tontine:
$$U_{n,\gamma}^{OT} = \frac{1}{1-\gamma} \left(\int_0^\infty e^{-rt} \beta_{n,\gamma}(tp_x)^{1/\gamma} dt \right)^{\gamma}$$

Conclusion

If costs are incurred to finance an annuity, a tontine may offer a higher expected lifetime utility than an annuity.

Content

- What is Tontine?
- Proposition
- **Mathematical Proofs**
- Numerical Examples
- Outlook
- Limitations

Cashflow Ranges of Flatrate Tontine

Cashflow Ranges of Flatrate Tontine

• Low in early years, highly variable in final years.

 Guaranteed rate is higher in early years, then declines over time.

- Guaranteed rate is higher in early years, then declines over time.
- Difference in payout for different γ 's is barely noticeable.

Optimal tontine payout function: pool of size $n = 25$			
Payout age 65	Payout age 80	Payout age 95	
7.565%	5.446%	1.200%	
7.520%	5.435%	1.268%	
7.482%	5.428%	1.324%	
7.447%	5.423%	1.374%	
7.324%	5.410%	1.541%	
7.081%	5.394%	1.847%	
$_{0}p_{65} = 100\%$	$_{15}p_{65} = 72.2\%$	$_{30}p_{65} = 16.8\%$	
	ne payout function: po Payout age 65 7.565% 7.520% 7.482% 7.447% 7.324% 7.081% 0P65 = 100%	ne payout function: pool of size $n = 25$ Payout age 65 Payout age 80 7.565% 5.446% 7.520% 5.435% 7.482% 5.428% 7.447% 5.423% 7.324% 5.410% 7.081% 5.394% $_{0}p_{65} = 100\%$ $_{15}p_{65} = 72.2\%$	

Notes: Assumes r = 4% and Gompertz Mortality (m = 88.72, b = 10).

Optimal tontine payout function: pool of size $n = 25$			
Payout age 65	Payout age 80	Payout age 95	
7.565%	5.446%	1.200%	
7.520%	5.435%	1.268%	
7.482%	5.428%	1.324%	
7.447%	5.423%	1.374%	
7.324%	5.410%	1.541%	
7.081%	5.394%	1.847%	
$_{0}p_{65} = 100\%$	$_{15}p_{65} = 72.2\%$	$_{30}p_{65} = 16.8\%$	
	ne payout function: po Payout age 65 7.565% 7.520% 7.482% 7.447% 7.324% 7.081% 0P65 = 100%	ne payout function: pool of size $n = 25$ Payout age 65 Payout age 80 7.565% 5.446% 7.520% 5.435% 7.482% 5.428% 7.447% 5.423% 7.324% 5.410% 7.081% 5.394% $_{0}p_{65} = 100\%$ $_{15}p_{65} = 72.2\%$	

Notes: Assumes r = 4% and Gompertz Mortality (m = 88.72, b = 10).

 Optimal tontine payout rates are insensitive to Risk Aversion Level γ, even if pool size is small.

Cashflow Ranges of Optimal Tontine

Cashflow Ranges of Optimal Tontine

Higher in initial years, relatively stable in final years.

Cashflow Ranges of Flatrate vs. Optimal Tontine

Range of Flat 4% Tontine Payout Purchased at 65: Gompertz Mortality 10th vs. 90th percentile: n = 400 (m=88.721, b=10)

Payout Functions of Optimal Tontine vs. Annuity

Payout Functions of Optimal Tontine vs. Annuity

 A loading to an annuity drives its payout down, hence utility of an annuity may be lower than that of an optimal tontine.

Utility Indifference Loadings

If the risk loading δ the annuity charges up front is higher than these amounts, the tontine is preferred.

	The highest annuity loading δ you are willing to pay					
If a tontine pool of size <i>n</i> is available						
	LoRA γ	n = 20	n = 100	n = 500	<i>n</i> = 1000	n = 5000
	0.5	72.6 b.p.	14.5 b.p.	2.97 b.p.	1.50 b.p.	0.30 b.p.
	1.0	129.8 b.p.	27.4 b.p.	5.74 b.p.	2.92 b.p.	0.60 b.p.
	1.5	182.4 b.p.	39.8 b.p.	8.45 b.p.	4.31 b.p.	0.89 b.p.
	2.0	231.7 b.p.	51.8 b.p.	11.1 b.p.	5.68 b.p.	1.18 b.p.
	3.0	323.1 b.p.	75.1 b.p.	16.3 b.p.	8.38 b.p.	1.75 b.p.
	9.0	753.6 b.p.	199.8 b.p.	45.9 b.p.	23.8 b.p.	5.09 b.p.

Assumes age x = 60, r = 3% and Gompertz mortality (m = 87.25, b = 9.5).

$$d(t) = D_N(_t p_x) \propto _t p_x$$

Payout:

$$d(t) = D_N(_t p_x) \propto _t p_x$$

Constraints: $\int_{0}^{\infty} e^{-rt} p_{x} c(t) dt = 1$ $\int_{0}^{\infty} e^{-rt} d(t) dt = 1$

Payout:

$$d(t) = D_N(tp_x) \propto tp_x$$
$$= tp_x c_0$$

Constraints: $\int_{0}^{\infty} e^{-rt} p_{x} c(t) dt = 1$ $\int_{0}^{\infty} e^{-rt} d(t) dt = 1$

- Payout:
 - $d(t) = D_N(tp_x) \propto tp_x$ $= tp_x c_0$

• Optimal for risk aversion $\gamma = 1$

Constraints: $\int_{0}^{\infty} e^{-rt} p_{x}c(t)dt = 1$ $\int_{0}^{\infty} e^{-rt}d(t)dt = 1$

Payout:

$$d(t) = D_N(tp_x) \propto tp_x$$
$$= tp_x c_0$$

• Optimal for risk aversion
$$\gamma = 1$$

Constraints:

$$\int_{0}^{\infty} e^{-rt} p_{x}c(t)dt = 1$$

$$\int_{0}^{\infty} e^{-rt}d(t)dt = 1$$

Optimal tontine: $D_{n,\gamma}^{OT}(p) = D_{n,\gamma}^{OT}(1)\beta_{n,\gamma}(p)^{1/\gamma}$

Certainty Equivalent factors associated with Natural Tontine

How much to be invested in the Natural Tontine in order to match €1 invested in a tontine optimized for the individual's own risk aversion.

That and the optimist contained				
Certainty equivalent for $n = 100$				
Age x	$\gamma = 0.5$	$\gamma = 1$	$\gamma = 2$	
30	1.000018	1	1.000215	
40	1.000026	1	1.000753	
50	1.000041	1	1.001674	
60	1.000067	1	1.003388	
70	1.000118	1	1.003451	
80	1.000225	1	1.009877	

Natural vs. optimal tontine

r = 3% and Gompertz m = 87.25, b = 9.5.

Certainty Equivalent factors associated with Natural Tontine

How much to be invested in the Natural Tontine in order to match €1 invested in a tontine optimized for the individual's own risk aversion.

Natural V3. Optimal tolitile				
Certainty equivalent for $n = 100$				
Age x	$\gamma = 0.5$	$\gamma = 1$	$\gamma = 2$	
30	1.000018	1	1.000215	
40	1.000026	1	1.000753	
50	1.000041	1	1.001674	
60	1.000067	1	1.003388	
70	1.000118	1	1.003451	
80	1.000225	1	1.009877	

Natural vs. optimal tontine

r = 3% and Gompertz m = 87.25, b = 9.5.

 Welfare loss for an individual with γ ≠ 1 to buy a Natural Tontine is minimal.

Certainty Equivalent factors associated with Natural Tontine

How much to be invested in the Natural Tontine in order to match €1 invested in a tontine optimized for the individual's own risk aversion.

Natural V3. Optimal tolitile				
Certainty equivalent for $n = 100$				
Age x	$\gamma = 0.5$	$\gamma = 1$	$\gamma = 2$	
30	1.000018	1	1.000215	
40	1.000026	1	1.000753	
50	1.000041	1	1.001674	
60	1.000067	1	1.003388	
70	1.000118	1	1.003451	
80	1.000225	1	1.009877	

Natural vs. optimal tontine

r = 3% and Gompertz m = 87.25, b = 9.5.

- Welfare loss for an individual with γ ≠ 1 to buy a Natural Tontine is minimal.
- Basis for designing tontine products.

Summary

- The Optimal Tontine offers a more desirable payout structure than the historical Flatrate Tontine.
- The Optimal Tontine is possible to offer a higher expected lifetime utility than a Loaded Annuity.
- The Natural Tontine is a reasonable structure for designing tontine products in practice.

Content

- What is Tontine?
- Proposition
- **Mathematical Proofs**
- **Numerical Examples**

Outlook

Limitations

May 17, 2019

Outlook

Problems in modern insurance industry

- longevity risks capacity
- ▷ poor experience in managing risk of long-dated fixed guarantees

- Problems in modern insurance industry
 - longevity risks capacity
 - ▷ poor experience in managing risk of long-dated fixed guarantees
- Solvency II
 - insurance companies have to hold more capital against risks
 - higher prices for products with long-term guarantees

- Problems in modern insurance industry
 - longevity risks capacity
 - ▷ poor experience in managing risk of long-dated fixed guarantees

Solvency II

- insurance companies have to hold more capital against risks
- b higher prices for products with long-term guarantees

Annuity puzzle

- Problems in modern insurance industry
 - longevity risks capacity
 - ▷ poor experience in managing risk of long-dated fixed guarantees
- Solvency II
 - insurance companies have to hold more capital against risks
 - > higher prices for products with long-term guarantees
- Annuity puzzle

Tontines could be a solution.

- Problems in modern insurance industry
 - longevity risks capacity
 - ▷ poor experience in managing risk of long-dated fixed guarantees
- Solvency II
 - insurance companies have to hold more capital against risks
 - > higher prices for products with long-term guarantees
- Annuity puzzle

Tontines could be a solution.

Other recent research in tontine-like structures:

Piggott et al.(2005), Valdez et al.(2006), Stamos(2008), Richter and Weber(2011), Donnelly et al.(2013), Qiao and Sherris(2013)...

Content

- What is Tontine?
- Proposition
- **Mathematical Proofs**
- **Numerical Examples**
- Outlook
- Limitations

Limitations and Future Works

May 17, 2019

Limitations and Future Works

Credit risk : default of sponsor

Limitations and Future Works

- Credit risk : default of sponsor
- Stochastic mortality : mortality rates change over time
 - tontine payouts more uncertain
 - higher capital charges added to annuity

Limitations and Future Works

- Credit risk : default of sponsor
- Stochastic mortality : mortality rates change over time
 - tontine payouts more uncertain
 - b higher capital charges added to annuity
- Asymmetric mortality : individuals have more information about his/her own life