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What is Tontine?

I A product to pool longevity risk of a group of people
→ retirement income product

I Sponsor, e.g. insurance company, is not exposed to any
longevity risk

I Pool of participants bears the risk entirely
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Example:

I 400 participants, each contributes e100, interest 4%

I yearly interest 400× 100× 4% =e1600 split among
surviving participants
. all survive: each receives e4
. 40 survive: each receives e40
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Brief History about Tontines

I Notable tontines in history:
. first tontine: Lorenzo de Tonti, invented in 1650s,

implemented in 1670 in Holland

. 1693 in England by King William III

. 1790 in U.S.: Hamilton’s Tontine Proposal

I Europe: lost popularity by 1850s

I U.S.: popular in late-19th century; banned since 1910

I traditional structure: fixed guaranteed payout rate
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Proposition

A Tontine with properly-constructed payout can

result in Expected Lifetime Utility comparable to that of

a Life Annuity, which therefore is reasonable to exist in

nowadays’ retirement insurance market.
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Approach

For both life-long Annuities and Tontines:

I Construct function for discounted expected lifetime
utilities based on a payout function dependent on t

I Assume a constraint on the payout function

I Find optimal payout function

(Euler-Lagrange theorem)

Ô Compare Utilities under optimal payout

maximize:
∫ x2

x1
F (x , y , y ′)dx

constraint:
∫ x2

x1
G(x , y , y ′)dx = k

⇒ ∂
∂y (F + λG)− d

dt

[
∂
∂y ′ (F + λG)

]
= 0
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Lifetime Annuities

I Payout function =: c(t)

I Discounted expected utilities

= E
[∫ ζ

0
e−rtu (c(t))dt

]
=

∫ ∞
0

e−rt
tpxu (c(t))dt

I Payout constraint:
∫ ∞

0
e−rt

tpxc(t)dt = 1

Euler
==⇒ Optimal payout c(t) =

[∫ ∞
0

e−rt
tpxdt

]−1

=: c0
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Tontines

• Number of initial subscribers =: n
• Random number of live subscribers =: N(t)
• Given a live individual, assume number of other live

subscribers N(t)− 1 ∼ Bin(n − 1, tpx)

I Payout function =: d(t)

I Discounted expected utilities

= E
[∫ ζ

0
e−rtu

(
nd(t)
N(t)

)
dt
]

=

∫ ∞
0

e−rt
tpx

n−1∑
k=0

(
n − 1

k

)
tpk

x (1− tpx)
n−1−ku

(
nd(t)
k + 1

)
dt
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I Payout constraint:
∫ ∞

0
e−rtd(t)dt = 1

Euler
==⇒ Optimal payout d(t) = Du(tpx) ,

which Du(p) satisfies

p
n−1∑
k=0

(
n − 1

k

)
pk (1− p)n−1−k n

k + 1
u′
(

nDu(p)
k + 1

)
= λ

and λ is chosen such that the payout constraint is
satisfied.
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In case of Constant Relative Risk Aversion (CRRA):

u(c) =

{
c1−γ/(1− γ) if γ 6= 1
log c if γ = 1

Optimal payout: DOT
n,γ (tpx) = DOT

n,γ (1)βn,γ(tpx)
1/γ

where βn,γ(p) = p · E
[(

n
N(p)

)1−γ
]
,N(p)− 1 ∼ Bin(n − 1, p)

DOT
n,γ(1) =

[∫ ∞
0

e−rtβn,γ(t px )
1/γdt

]−1
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Compare Expected Utilities

Annuity:

UA
γ =

1
1− γ

(∫ ∞
0

e−rt
tpxdt

)γ
Tontine:

UOT
n,γ =

1
1− γ

(∫ ∞
0

e−rtβn,γ(tpx)
1/γdt

)γ
βn,γ(p)

{
< pγ if 0 < γ < 1
> pγ if 1 < γ

⇒ A Tontine always has expected utility smaller than that of
an Annuity.
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What if there are costs for an insurance company to
finance the annuity?

E.g. Capital reserves, risk management costs...

→ A fraction δ of initial deposits is deducted as funding.

Utility of Loaded Annuity:

UA
γ =

(1− δ)1−γ

1− γ

(∫ ∞
0

e−rt
tpxdt

)γ

Tontine: UOT
n,γ =

1
1− γ

(∫ ∞
0

e−rtβn,γ(tpx)
1/γdt

)γ
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Conclusion

If costs are incurred to finance an annuity,
a tontine may offer a higher expected lifetime
utility than an annuity.
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Cashflow Ranges of Flatrate Tontine

• Low in early years, highly variable in final years.
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Optimal Tontine Payout Function

• Guaranteed rate is higher in early years, then declines
over time.
• Difference in payout for different γ’s is barely noticeable.
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Optimal Tontine Payout Function

• Optimal tontine payout rates are insensitive to Risk
Aversion Level γ, even if pool size is small.
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Cashflow Ranges of Optimal Tontine

• Higher in initial years, relatively stable in final years.
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Cashflow Ranges of Flatrate vs. Optimal Tontine

Flatrate:

Optimal:
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Payout Functions of Optimal Tontine vs. Annuity

• A loading to an annuity drives its payout down,
hence utility of an annuity may be lower than that of an
optimal tontine.
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Utility Indifference Loadings
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Natural Tontine

I Payout:

d(t) = DN(tpx) ∝ tpx

= tpxc0

I Optimal for risk aversion
γ = 1

Constraints:∫ ∞
0

e−rt
tpxc(t)dt = 1∫ ∞

0
e−rtd(t)dt = 1

Optimal tontine:

DOT
n,γ (p) = DOT

n,γ (1)βn,γ(p)1/γ
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Certainty Equivalent factors
associated with Natural Tontine
I How much to be invested in the Natural Tontine in order to match
e1 invested in a tontine optimized for the individual’s own risk aversion.

• Welfare loss for an individual with γ 6= 1 to buy a Natural
Tontine is minimal.
• Basis for designing tontine products.
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Summary

I The Optimal Tontine offers a more desirable payout
structure than the historical Flatrate Tontine.

I The Optimal Tontine is possible to offer a higher expected
lifetime utility than a Loaded Annuity.

I The Natural Tontine is a reasonable structure for
designing tontine products in practice.
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Outlook

I Problems in modern insurance industry
. longevity risks capacity
. poor experience in managing risk of long-dated fixed guarantees

I Solvency II
. insurance companies have to hold more capital against risks
. higher prices for products with long-term guarantees

I Annuity puzzle

Tontines could be a solution.

Other recent research in tontine-like structures:

Piggott et al.(2005), Valdez et al.(2006), Stamos(2008), Richter and

Weber(2011), Donnelly et al.(2013), Qiao and Sherris(2013)...
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Limitations and Future Works

I Credit risk : default of sponsor

I Stochastic mortality : mortality rates change over time
. tontine payouts more uncertain
. higher capital charges added to annuity

I Asymmetric mortality : individuals have more information
about his/her own life
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