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Abstract

The annuity overlay fund by Donnelly et al. [Donnelly, C., Guillén, M., Nielsen,

J.P., 2014. Bringing cost transparency to the life annuity market. Insur Math

Econ 56, 14-27] pools mortality risks of a group of individuals. Comparing to

traditional annuities, the fund has the merits of being cost-transparent, granting

members the authority on investment decisions, as well as allowing free entry

and exit before death. The great flexibility of the annuity overlay fund enables

itself to be adapted for applications in various aspects.

We explore the fund in three directions:

• a discrete-time model for the annuity overlay fund is developed, which is

helpful for practical implementation of the fund;

• the risk and return features of the fund are examined and a framework

to analyse the relative attractiveness of the fund between members with

heterogeneous wealth-mortality profiles is proposed; and

• a specific method to operate the fund is proposed for application in the

retirement aspect, with which a stream of benefit payment that is constant

in expectation over time can be provided to fund members until death.

The insights brought out from the thesis serve to bring readers a more thorough

picture of the annuity overlay fund and provoke further investigation on its use-

fulness in practice. Our discussions and results can also be seen as a confirmation

of the practicality of the fund.
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Chapter 1

Introduction

Annuity overlay fund, recently proposed by Donnelly et al. (2014), is an invest-

ment product allowing to pool mortality risk. In this thesis, we follow up the

work of Donnelly et al. (2014) by developing a discrete-time model, conducting

a risk-return analysis, and proposing an application in the field of retirement

insurance.

1.1 Annuity Overlay Fund

Annuities have long been used globally as a means of retirement insurance. At

a high level, an annuitant pays a single premium at inception, in exchange for a

fixed payment to be received regularly until death. The uncertainty in the death

time of the annuitant, termed as the mortality risk, is transferred to the insurer

through buying the annuity. Regardless of until when the annuitant survives,

she is protected financially by the fixed benefit payments.

The importance of annuitization in retirement planning has been well recog-

nized among the literature since the work by Yaari (1965), which has shown

that, individuals who have no bequest motive should annuitize all wealth so as

to maximize the lifetime expected utility, assuming that the annuity market is

actuarially fair. Nevertheless, throughout the decades, demand for annuity has

been observed to be significantly lower than the level predicted by theories, a

phenomenon termed as the annuity puzzle. Among others, the fact that annu-

ities are cost-intransparent has been suggested to be one of the reasons of the

puzzle (Blake (1999); Stewart (2007)). See Section 1.5 for a further discussion on

the cost-intransparency issue with annuities. In view of this issue, a new product

structure, called annuity overlay fund, has been recently proposed by Donnelly

et al. (2014) and is reviewed below.

The annuity overlay fund, being similar to an annuity, pools mortality risks of
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1 Introduction Annuity Overlay Fund

a group of individuals. The fund operates as follows: at inception, a group

of surviving participants joins the fund by investing some amount of wealth.

This wealth is to be accumulated with market return through investing in the

financial market until some fixed terminal time. Then, at the terminal time, the

wealth from participants who have perished by this time will be shared among

all members in the fund (including those who have perished), with each member

receiving an amount computed based on both her probability of death in the

whole period and her accumulated wealth at the terminal time. The annuity

overlay fund offers a number of advantages over an annuity.

• Cost-transparency. Under the mechanism of the annuity overlay fund,

mortality risk and investment risk are separated. This allows various costs

to be ascribed to their own source. For example, customers can identify

investment fees, administrative costs and other charges independently. A

transparent disclosure of charges can be achieved.

• Freedom of investment decision. Participants of the annuity overlay fund

can freely decide their own investment strategy in the financial market, and

the market risk is born by themselves. This is in contrast with an annuity,

with which investment decisions are determined by the insurer and customers

have no authority over it.

• Freedom of entry and exit. Unlike with an annuity, where customers must

remain in the contract until death, or otherwise pay a substantial financial

penalty upon exit, individuals can enter and exit the annuity overlay fund

before death without penalty. In the limiting case, as in the work by Donnelly

et al. (2014), where the mathematical model is built on an instantaneous time

basis, individuals can freely enter and exit the fund at any point of time. In

this thesis we consider a discrete-time model, under which individuals can

freely enter and exit the fund at the beginning of each period specified by the

fund provider.

• Investment framing. The annuity overlay fund offers participants tangible

financial gain from pooling mortality risks. Participants are able to assess

the fund by simply looking at the yield obtained, same as when making other

investment decisions. This is different from annuities, the value of which is

appraised under a consumption framing. It has been documented that, when

evaluating financial benefits from pooling mortality risks, individuals tend

2



1 Introduction Annuity Overlay Fund

to adopt an investment framing, for example, by relating an annuity to the

risk and return features or a “payback period” (Hu and Scott (2007); Brown

et al. (2008)). In this regard, the annuity overlay fund is likely to appear

more attractive than annuities to consumers.

Along with the above merits, since the annuity overlay fund is merely pooling and

redistributing wealth of participants, there is no guarantee involved and hence

no risk capital requirement is to be fulfilled. Consequently the annuity overlay

fund can be offered to customers at a low cost.

It has been emphasized in the work by Donnelly et al. (2014) that, since the

annuity overlay fund does not guarantee participants an income stream until

death, i.e. not protecting participants against mortality risk, being different

from an annuity, the fund should not be treated as an insurance product but

rather an investment product. The purpose of the fund is to offer consumers an

alternative way of pooling mortality risks, with which costs can be transparently

disclosed and traced to respective sources, allowing consumers to make informed

financial decisions and purchase what really suits their need.

Donnelly et al. (2014) provide theoretical formulas for the expectation and vari-

ance of the fund’s payout to a fund member, which is dependent on the member’s

wealth and probability of death in the concerned period (a.k.a. her wealth-

mortality profile), yet there are limited elaborations on them. While different

members receive some different payouts, it is not clear, how these are to be val-

ued from the perspective of the fund members. In this regard, we raise our first

question:

Is the fund equally attractive to members with different wealth-mortality

profiles, or would any particular group find the fund more favourable

than the others?

Meanwhile, due to improving human life expectancy, insurance companies are

facing increasing pressure for providing retirement products including annuities.

As retirees generally live longer, retirement benefits have to be provided for a

longer period on average. The tightening regulations, such as the introduction

of Solvency II in Europe, together with the low interest rate environment in

recent years have added further difficulty to insurers in meeting the risk capital

requirements for providing retirement policies. One direct consequence of these
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1 Introduction Our Contributions

issues is an increase in annuity price to cover the growing costs. Eventually,

buyers of retirement insurance suffer from paying a higher insurance premium.

In attempt to mitigate the problem, various alternative product designs which

pool mortality risks across a group of participants have been reviewed and stud-

ied in recent years. For example, tontine and pooled annuity funds have been

much investigated. See Section 1.5 below for a brief review on these structures.

Together with the annuity overlay fund, these structures all work fundamentally

with the same central idea: pooling the wealth of a group of individuals and

redistributing the wealth of the deceased ones among the group according to cer-

tain principle. For all, the distinction lies in how the wealth from the deceased

is distributed.

In recent research, both the tontine and the pooled annuity fund have been

suggested as a means of supporting retirement consumption. Instead of relying

on annuities, which require the insurer to bear all longevity risks of retirees,

these structures are proposed, as they can pool the mortality risks of a group

of retirees in a way that allows the retirees to bear part of the risks themselves.

The part of risk born by the retirees is reflected through the uncertainty in their

actual retirement benefit amount to be received. Through these innovations, it

is hoped that a better splitting of risk between the insurer and the retirees can

be attained, which is beneficial to both parties in the sense that, insurer bears

less risk and hence faces less pressure from the risk capital requirement, whereas

retirees are charged a lower premium in exchange for bearing part of the risk

themselves.

In view of the similar concept behind all these structures, we are motivated to

look at the possibility of applying the annuity overlay fund to support retirement

consumption. We ask the second question:

Could the annuity overlay fund be managed in some way, such that

it could also serve to provide retirement benefits to fund members?

1.2 Our Contributions

This thesis serves to address the two raised questions above and contributes in

the following aspects:

4



1 Introduction An Analysis based on Risk and Return

1. Based on the continuous-time model of the annuity overlay fund proposed

in Donnelly et al. (2014), we establish a discrete-time model of the fund.

The discrete-time model is employed, since it is often preferred by insurance

companies for business execution in practice.

2. The risk and return features of the annuity overlay fund are investigated,

and an analysis based on these features is proposed to examine the relative

attractiveness of the fund between members with heterogeneous wealth-

mortality profiles. See Section 1.3 for an overview.

3. A novel way of operating the annuity overlay fund is proposed, with which

the fund acts as an instrument to provide retirement benefits to fund mem-

bers. The resulting stream of retirement benefits is constant in expectation

over time, and the insurance company bears theoretically zero risk for pro-

viding such payments. See Section 1.4 for an overview.

1.3 An Analysis based on Risk and Return

The annuity overlay fund offers fund members two sources of gain (or loss). First,

the initial wealth of a member is accumulated with return from the financial

market until some fixed terminal time, according to some investment strategy

freely chosen by the member. Then, at the terminal time, both the accumulated

wealth of the member and her survival status until then will be used to determine

her second gain from the fund, the gain from pooling mortality risks, termed by

the original authors as the actuarial gain.

In our upcoming analysis, we view the expectation of actuarial gain upon sur-

vival at the terminal time as “return” and the variance of which as “risk”, both

quantities conditional on that the market return is known. By referencing to

these quantities, we examine the attractiveness of the annuity overlay fund for

participants with different wealth-mortality profiles.

Our setting for “return” and “risk” as such is based on two considerations:

1. Randomness in market return not considered

Our focus is on the pooling of mortality risks, that is, how the actuarial gain
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1 Introduction An Analysis based on Risk and Return

for the fund members are ascertained based on their wealth-mortality profiles

at the terminal time. Although market return plays a role in determining

the terminal wealth, it is not the center of our attention. For simplicity, our

analysis is done conditional on that the market return for all fund members

is already known. 1

2. No bequest motive

We assume that bequest motive has been taken care of by all individuals

before they commit any wealth into the fund, so that there is no motive to

obtain bequest from the fund. Therefore, the actuarial gain to be received

upon death by the terminal time is left out, only the gain upon survival is

considered in our analysis. This point is worth some elaboration. As shown

in the work by Donnelly et al. (2014) and also in our revisit on the fund later,

unconditional on the survival status at the terminal time, a fund member

earns an expected actuarial gain of zero. Yet, the variance of the actuarial

gain, which is random, is obviously greater than zero. Therefore, from the

perspective of risk and return, it would not be rational for any risk-averse

individual to invest into the fund if one takes both the cases of survival and

death into consideration. Meanwhile, as we will also see, the actuarial gain

upon death is most often negative, equivalent to a loss, which is not desirable.

All in all, it makes sense to conjecture that, one invests into the fund only if

the case of death is ignored, or that bequest does not matter. This is taken

as our assumption.

We start with applying the simple first-order differentiation technique and find

that, fund members who are older respectively investing more into the fund earn a

larger actuarial gain upon survival, and at the same time face a larger variance on

the actuarial gain upon survival. In other words, these members are involuntarily

facing a risk-return trade-off at a larger magnitude plainly due to the mechanism

of the annuity overlay fund. Conversely, members who are younger respectively

investing less face a smaller magnitude of risk-return trade-off.

Afterwards we attempt to address our question of whether the fund offers equal

values to all fund members. Naturally, the answer depends very much on the

members’ personal valuation approaches. Different members can assign very

1Since all members can pick different investment strategies, if one is to consider also the
randomness in market return, no analytical results can be established and one can only resort
to numerical simulations.
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1 Introduction Supporting Retirement Consumption

different values to the same magnitude of trade-off simply because of different

individual perceptions. Not only their relative weighting placed between risk and

return matters, but their appreciation on wealth also plays a role. Among all,

we are particularly interested in, how the members’ attitude towards risks would

influence their perception on the fund. To this end, we employ the expected

utility theory, with which an individual’s valuation on wealth is characterized by

her own utility function, and her attitude towards risks is quantified by the abso-

lute risk aversion (ARA) coefficient. With reference to these quantities, we take

an approximation of the expected change in utility conditional on survival until

terminal time as a metric of the fund’s attractiveness, and conduct a compari-

son on the fund’s attractiveness for two members with different wealth-mortality

profiles.

The members’ perception on their marginal increase in wealth as well as their at-

titude towards risks are crucial factors for the resulting conclusions. By assuming

that the two members under comparison enjoy the same increase in utility per

unit increase respectively per percentage increase in wealth, we give a numerical

illustration on exploring the correlation between the risk aversion levels of the

members and the relative attractiveness of the fund to the members.

Our purpose here is to give direction on examining the relative attractiveness

of the fund between heterogeneous members at a high level. For the sake of

generality, we do not assume any specific form of utility function and provide

only a framework of the analysis. The analysis can be practically employed once

the members’ utility functions on wealth as well as their risk aversion levels are

known.

1.4 Supporting Retirement Consumption

We also propose a method of operating the annuity overlay fund, with which the

fund acts as an instrument for supporting retirement consumption.

The annuity overlay fund is advocated here, primarily because of its feature

of being an open fund, an advantage that few other recently reviewed designs

possess. This feature enables the fund to constantly admit new members into

the fund, so that the total number of member remaining in the fund does not

drop despite deceased members exiting, but remains stable as time passes. By
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1 Introduction Supporting Retirement Consumption

the Law of Large Number, a stable instead of diminishing pool means members

can receive gains at a relatively stable level of uncertainly at all time.

A brief description of our idea is given in the following.

We assume all individuals have no bequest motive and their mortality rates with

respect to age remain unchanged. The fund operates on a periodical basis recur-

sively, let us say one round of pooling every year, so that there is one payment

made to participants at the end of each year. At the beginning of each year, cer-

tain fixed number of individuals attaining the retirement age enters the fund and

must remain in the fund until either death or reaching some limiting age. Then,

at each year-end, the wealth of the members who have perished is shared among

all members who were in the fund at the beginning of the year, in accordance

to the fund’s sharing rule. For the surviving members, this random amount is

directly paid out as the first part of their retirement benefit. Meanwhile, sur-

viving members also withdraw some predetermined amount from her own fund

account as the second part of the retirement benefit. In total, a surviving mem-

ber obtains two sources of benefit at each year-end: first the random amount

contributed from the perished members, second the known withdrawal amount

from her own fund account.

In Chapter 4 where the proposed operation is discussed in details, our goal is to

solve for the fixed withdrawal amount at each age for a participant, such that

the retirement benefit for her, which is the sum of the two payments described

above, is constant in expectation over time.

Under the proposed operation, by allowing randomness in the actual benefit

payment amount, retirees bear the mortality risks themselves as a group, in

exchange for the theoretically zero risk capital cost charged from their insurance

premium. Comparing to an actuarially fair annuity, the expected retirement

payment from the annuity overlay fund is always less, as there is also a small

payment allocated to the deceased members. Yet, in the realistic case that risk

capital costs are embedded in the annuity price (whereas there is none for the

annuity overlay fund), it is possible that the annuity overlay fund is preferred

over a traditional annuity, if the reduction in the expected payment from the

fund is less than the loadings added to the annuity, and retirees are willing to

bear some level of uncertainty in the actual benefit payment amounts.

In addition, we demonstrate that, in case of stochastic mortality, adaptations

8



1 Introduction Related Work

can be made to the proposed operation in the limiting case, so that the resulting

stream of payment can remain constant in expectation.

1.5 Related Work

For readers who are interested, some literature relevant to the background dis-

cussed are summarized below for further references.

Cost-intransparency of Annuities

The cost-intransparency problem of annuities has been discussed by, for exam-

ple, Friedman and Warshawsky (1988); Blake (1999); Mitchell et al. (1999) and

Stewart (2007). Upon purchasing an annuity, the single premium paid by the

annuitant is held and invested into the financial market by the insurer. The

annuity price is calculated under some actuarial basis laid down by the insurer,

which consists of assumptions on both investment returns and the population’s

mortality level. Mortality risk and investment risk are hence implicitly com-

bined in the price determination process. From the perspective of an annuitant,

all that are known are the quoted annuity price and the regular benefit payment

to be received, whereas the many loadings involved behind, such as administra-

tion costs, investment fees, costs for bearing mortality risk and profit margin,

are encapsulated as a black box. Such opaqueness of the loadings embedded in

the annuity price has been suggested by, for example, Blake (1999) and Stewart

(2007) to be one of the reasons for the observed low annuity demand.

Among academic literature, the cost of an annuity is often estimated by calculat-

ing the money’s worth of the annuity, which is the ratio of the expected present

value of all annuity payouts to the premium amount. The difference between

the calculated money’s worth and one is taken as an indicator for the percentage

cost charged to the annuity. The values of the money’s worth of annuities how-

ever differ significantly for different countries and different studies. For example,

based on data in 1995, Mitchell et al. (1999) calculate the money’s worth of

annuity in the U.S. to be in the range of 74%-94%. Blake (1999) further decom-

pose the charges into two categories, namely administrative costs and loadings

due to heterogeneity of the population’s survival probability, and has shown that

9



1 Introduction Related Work

each constitutes around half of the total costs. On the other hand, using data

from 1998, Finkelstein and Poterba (2002) report a figure of money’s worth in

the U.K. of 99% for males, whereas Murthi et al. (2000) suggest 93%. Cannon

and Tonks (2009) conducted a trend analysis and observed a dropping trend of

money’s worth from 90% to 85% from 1994 to 2007. In view of the significant

variation in results in spite of the sophisticated mathematical methods employed

in the relevant literature, it is not hard to imagine that for the general public,

who have relatively less knowledge on financial topics, it is even harder to judge

the value of an annuity product.

Other than the issue of being cost-intransparent, a variety of reasons have been

suggested throughout the decades to explain the annuity puzzle. See e.g. Ramsay

and Oguledo (2018) for an extensive summary on the huge amount of research

on this topic.

Innovations pooling Mortality Risks

Along with the annuity overlay fund, various innovations which also work by

pooling mortality risks of a group of individuals have been proposed in the liter-

ature. We list some of them below.

The tontine is a research topic currently gaining popularity. Its mechanism is sim-

ple: at inception a group of participants invests some amount of money, at each

subsequent payment time, the interests of the investment from all participants

are to be shared equally among the surviving participants. Originated centuries

ago, this structure has been reviewed by Milevsky and Salisbury (2015), who

reconstructed the term structure of the interest rate, under which participants

can receive a much stabler stream of payment in expectation upon survival. A

considerable amount of research on tontine has followed. For example, Milevsky

and Salisbury (2016) extend the operation of tontine to heterogeneous partici-

pants, whereas Bernhardt and Donnelly (2019) propose a mechanism with which

bequest can be provided to the deceased tontine participants. Bräutigam et al.

(2017) compare the annuity overlay fund against the tontine. Extending from

tontine, Chen et al. (2019) introduce the “tonnuity”, which is a combination of

tontine and annuity.

Piggott et al. (2005) propose and analyse the mathematical model of the group

self-annuitization scheme, with which payouts to a participant mimic that from

10



1 Introduction Thesis Structure

an annuity, but are adjusted according to the actual mortality experience of the

group (lowered if mortality improves). Valdez et al. (2006) study the issues of

demand and adverse selection of the scheme. Hanewald et al. (2013) show that

the scheme plays a significant role in individual’s choice of retirement strategy.

The scheme is improved by Qiao and Sherris (2013) through allowing dynamic

pooling and incorporating a stochastic mortality model.

The pooled annuity fund, proposed by Stamos (2008), works similarly as the

tontine, with a major difference being that, wealth of the deceased is shared

among the surviving members not equally but in proportion to their wealth in

the fund. Under the expected utility framework, Stamos (2008) investigates the

optimal investment and consumption strategies for homogeneous participants, a

case which coincides with the tontine.

Donnelly (2015) analyses the annuity overlay fund together with the group self-

annuitization scheme by Piggott et al. (2005) and the pooled annuity fund by

Stamos (2008) from the perspective of actuarial fairness. It is shown that, with

a pool of heterogeneous participants, only the annuity overlay fund is actuarially

fair, meaning that each participant receives in expectation the same amount as

what she has paid and no one in the pool subsidizes or benefits from the others.

1.6 Thesis Structure

The remainder of the thesis is structured as follows: Chapter 2 details the

discrete-time model of the annuity overlay fund. In Chapter 3 we investigate

the mean and variance features of the fund for members with different wealth-

mortality profiles, then perform an analysis to examine the relative attractiveness

of the fund between heterogeneous members. In Chapter 4 we propose a method

to operate the annuity overlay fund for use in retirement aspect, with which

participants obtain a constant stream of payment in expectation upon survival.

Finally, Chapter 5 concludes the thesis. In view of the fairly large amount of no-

tations to be defined in the thesis, a table of all notations to be used is provided

in Appendix A for a clear overview.

11



Chapter 2

Discrete-Time Model

The mathematical model of the annuity overlay fund is detailed in this chapter.

Extending from the continuous-time model in Donnelly et al. (2014), we develop

the discrete-time model, which will be used throughout the remainder of the

thesis.

2.1 Model Description

Let time 0 be the inception time and time T > 0 be the terminal time which is

known. For example, T could be a month or a year. At time 0, there are M ∈ N
surviving members in the annuity overlay fund, each member m ∈ {1, 2, . . . ,M}
invests some wealth amount W

(m)
0 > 0 into the fund and has death probability

TQ
(m)
0 in the time interval [0, T ] without uncertainty. Denote the survival status

of the member m ∈ {1, 2, . . . ,M} at time T by N
(m)
T , where N

(m)
T = 0 means she

is alive at time T and N
(m)
T = 1 otherwise.

At time 0, the wealth of each member is invested in the financial market, and

each member decides independently on their own investment strategy. For an

arbitrary member k, R
(k)
T denotes the rate of market return on her wealth W

(k)
0

during the time interval [0, T ], which can be either certain or random depending

on the member’s investment strategy.1 The new wealth W
(k)
T− at time T after

earning the market return is computed as W
(k)
T− = W

(k)
0

(
1 +R

(k)
T

)
.

The survival status and the market return of all fund members are defined on

the same complete probability space (Ω,F = {F0,FT−,FT},P). The filtrations

F0 and FT are respectively the σ-algebra generated by all random processes up

to and including time 0 and T , which represent information on both the survival

1Here we have not established a market model, therefore the nature of R
(k)
T , whether being

a constant or a random variable, is not specified. As market return is not being analysed, a
detailed model for which is not required for establishing the subsequent contents, and we omit
it to avoid adding unnecessary complexity to the thesis.
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2 Discrete-Time Model Model Description

status and the market return of all members respectively at time 0 and T . The

filtration FT− is the same as FT except that it excludes information on the

members’ survival status at time T .

For each member m ∈ {1, 2, . . . ,M} in the fund, if she passes away during the

time interval [0, T ], her wealth W
(k)
T− is to be put into a notional mortality account.

Hence, at time T , the total amount of money that has flown into the account

due to all deaths in the interval [0, T ], denoted by UT , is

UT =
M∑
m=1

W
(m)
T− N

(m)
T . (2.1)

This amount is then shared among all members who participated in the fund at

time 0 (regardless of whether they survive or not at time T ), in proportion to

their wealth-mortality profile. An arbitrary member k ∈ {1, 2, . . . ,M}, who has

probability of death TQ
(k)
0 during the period [0, T ] and owns wealth W

(k)
T− at time

T , receives the fraction

TQ
(k)
0 W

(k)
T−∑M

m=1 TQ
(m)
0 W

(m)
T−

· UT . (2.2)

Denote by G
(k)
T the actuarial gain obtained by member k at time T . If she

survives until time T , she is awarded the amount given in (2.2). Otherwise, if

she passes away during the interval [0, T ], she is still entitled to this amount

given in (2.2), yet her wealth W
(k)
T− has been forfeited and put into the notional

mortality account at the first place, so she suffers from a loss of her initial wealth

at the same time. Summarizing, this member earns an actuarial gain at time T

according to her own survival status at time T , in accordance to the following:

G
(k)
T =


TQ

(k)
0 W

(k)
T−∑M

m=1 TQ
(m)
0 W

(m)
T−

UT −W (k)
T− , if the member dies during [0, T ],

TQ
(k)
0 W

(k)
T−∑M

m=1 TQ
(m)
0 W

(m)
T−

UT , if the member is alive at time T.

(2.3)

The only difference between the actuarial gain upon survival and death lies on

the term −W (k)
T−, which originates from the forfeited wealth of W

(k)
T− upon the

13



2 Discrete-Time Model Model Description

member’s death during the period. Further, note that conditional on survival at

the terminal time the actuarial gain is always non-negative, implying that upon

survival a member never losses in terms of the actuarial gain.

At the end of the period, after distributing the actuarial gain, the pooling termi-

nates. In total, at time T , the arbitrary member k owns the wealth accumulated

with market return W
(k)
T− plus the actuarial gain G

(k)
T given in (2.3). That is, the

new wealth of the member at time T after pooling, denoting by W
(k)
T , is

W
(k)
T =W

(k)
T− +G

(k)
T

=


TQ

(k)
0 W

(k)
T−∑M

m=1 TQ
(m)
0 W

(m)
T−

UT , if the member dies during [0, T ],

W
(k)
T− +

TQ
(k)
0 W

(k)
T−∑M

m=1 TQ
(m)
0 W

(m)
T−

UT , if the member is alive at time T.

(2.4)

In short, the member always receives the fraction given in equation (2.2) as well

as the market return independent of survival or death during the period, yet

upon death her wealth W
(k)
T− is to be given up.

Afterwards, another pooling can start again at time T , which is independent of

the period [0, T ], by forming a new portfolio of members at time T . For example,

previous members who survived the period [0, T ] can remain participating in the

new period, and if so, they decide on some new amount to be invested into the

fund for the new period. One can otherwise opt to exit. Clearly there can also

be other new joiners into the fund. Based on the new portfolio of members at

time T , a new round of pooling can be established in the same way as above.

The annuity overlay fund is distinct in that, it is pooling wealth of members

only periodically. Consequently, individuals are free to enter and exit the fund

as well as change their investment amount at the beginning of each period. This

feature is made possible by that, the annuity overlay fund is actuarially fair for

all members on a periodical basis, mathematically meaning

E
(
G

(k)
T

∣∣∣FT−) = 0 (2.5)

for any k (for a detailed proof of equation (2.5) refer to Appendix B, which is a

simple adaptation of the result in Donnelly et al. (2014) to discrete time frame).
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2 Discrete-Time Model Illustrative Example

In verbal terms, in each period, each member earns zero expected actuarial gain.

At the end of a period, each member therefore does not owe or benefit from

other members in expectation, and as a result is free to leave the fund. Further,

individuals with any wealth-mortality profile are allowed to participate in the

fund, as each individual’s profile is being taken care of by fraction (2.2).

Remark 2.1 Upon comparing with the model given in Donnelly et al. (2014),

one would notice that here we express the portfolio of members in a slightly dif-

ferent manner. Instead of grouping members who have the same wealth-mortality

profile into one unit as in the work by Donnelly et al. (2014), here we consider

each member individually, or that each member forms one group by herself. The

mechanism of the fund remains the same and all the mathematical formulas lead

to the same results. We adopt this other form of expression, since in this way,

each member can be treated independent of all other members. This is important

for our analysis and will allow the subsequent contents to be followed more easily.

2.2 Illustrative Example

The toy example given in Section 2 of Donnelly et al. (2014), which well illus-

trates the fund’s operation on a discrete time basis, is cited below for clearer

understanding. Additionally, to give a more complete picture, a market return

is incorporated in the example below.

Suppose the time interval is as one month. At the beginning of the month, two

individuals, Alice and Bob, participate in the annuity overlay fund. Each of the

two has distinct wealth amount and probability of death during the month. The

information on each of them is listed in Table 2.1.

Member Wealth Death probability in the month

Alice 1 000 000 0.2%

Bob 50 000 0.1%

Table 2.1: Information on Alice and Bob at the beginning of the month.

The wealth from each of Alice and Bob is to be invested in the financial market

independently, according to their individually chosen investment strategy. Sup-
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2 Discrete-Time Model Illustrative Example

pose at the end of the month, their investment strategy earns them an actual

market return as given in Table 2.2.

Member At the end of the month

Realized market return Wealth before pooling

Alice 2% 1 000 000× (1 + 2%) = 1 020 000

Bob 3% 50 000× (1 + 3%) = 51 500

Table 2.2: Alice and Bob’s realized market return at the end of the month.

If, for example, during the month Bob passes away, his wealth after rolling up

with market return 51 500 is to be put into the notional mortality account. At

the end of the month, Alice receives an actuarial gain from the death of Bob

(according to equation (2.3)) of

51 500× 1 020 000× 0.2%

1 020 000× 0.2% + 51 500× 0.1%
= 41 119,

whereas Bob receives an actuarial gain from his own death of

51 500× 51 500× 0.1%

1 020 000× 0.2% + 51 500× 0.1%
− 51 500 = −41 119.

In total, the new wealth of Alice at the end of the month is (using equation (2.4))

1 020 000 + 41 119 = 1 061 119 and that of Bob is 51 500− 41 119 = 10 381. As

Bob is dead, this amount is to be paid to his estate.

For all other possible scenarios, i.e. when only Alice perishes, both perish or

both survives, calculations are done in the same way.

At the end of the month, after distributing the actuarial gain (if any), the pooling

ends. Each of Alice and Bob, upon survival, can decide on whether to participate

again in the annuity overlay fund in the next month, with the possibility of having

also other new participants in the fund.
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Chapter 3

Analysis on Fund Attractiveness

This chapter examines the relative attractiveness of the annuity overlay fund be-

tween members with different wealth-mortality profiles. The expected actuarial

gain awarded to a member upon her survival at the terminal time, which we

term as the expected “survival gain” for short in the sequel, is viewed as the

return from the fund, whereas the variance of the survival gain is viewed as the

risk. We apply first-order differentiation to examine the influence of a member’s

wealth and mortality information on her risk-return trade-off. To quantify the

attractiveness of some risk-return trade-off offered by the fund, we approximate

the expected change in utility resulting from the trade-off for a member. We

then compare this quantity for members with different wealth-mortality profiles.

For simplicity in discussion, in the remainder we assume that an individual’s

death probability in a period is strictly increasing with age, that is, TQ
(k1)
0 <

TQ
(k2)
0 holds if and only if member k1 is younger than member k2.

3.1 Risk-Return Trade-off

Corresponding to the results in the original work by Donnelly et al. (2014), the

expected survival gain for an arbitrary member k is

E
(
G

(k)
T

∣∣∣FT−, N (k)
T = 0

)
= TQ

(k)
0 W

(k)
T−

(
1− TQ

(k)
0 W

(k)
T−∑M

m=1 TQ
(m)
0 W

(m)
T−

)
, (3.1)

and the variance of the survival gain is

Var
(
G

(k)
T

∣∣∣FT−, N (k)
T = 0

)
=

(
TQ

(k)
0 W

(k)
T−∑M

m=1 TQ
(m)
0 W

(m)
T−

)2

 M∑
m=1,
m 6=k

(
W

(m)
T−

)2
TQ

(m)
0

 .

(3.2)
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3 Analysis on Fund Attractiveness Risk-Return Trade-off

The detailed proofs for equations (3.1) and (3.2) are given respectively in Ap-

pendix C and D.

In the following, we understand how the expectation and variance of the rate

of survival gain of a member, represented by equations (3.1) and (3.2), are in-

fluenced by the relevant factors, namely the fund’s total number of members

(a.k.a. the pool size) and all members’ wealth-mortality profiles. In most cases,

we adopt the simple analysing method of taking first order differentiation and

observing the sign of change of the relevant quantity when a factor changes.

Table 3.1 is the outline of the flow of observations to be made.

Factors

Pool Size Age Wealth

Expectation/ Eq.(3.1)
Observation A

Observation B Observation D

Variance/ Eq.(3.2) Observation C Observation E

Table 3.1: Flow of upcoming observations.

A. Effect of Pool Size

Let us take a closer look at equations (3.1) and (3.2). Obviously, the term∑M
m=1 TQ

(m)
0 W

(m)
T− increases with the pool size M , since W

(m)
T− and TQ

(m)
0 are

strictly positive for all m ∈ {1, 2, . . . ,M}. Hence, the expected survival gain

increases with pool size, whereas its variance decreases with pool size.

Assume that as the number of total fund members tends to infinity, the total

wealth from all members also tends to infinity, which is a condition generally

satisfied in reality. Analog to equations (11) and (12) in Donnelly et al. (2014),

as the pool size tends to infinity, the expected survival gain tends to

lim
M→∞

E
(
G

(k)
T

∣∣∣FT−, N (k)
T = 0

)
= TQ

(k)
0 W

(k)
T−, (3.3)

or equivalently, the expected rate of survival gain tends to

lim
M→∞

E

(
G

(k)
T

W
(k)
T−

∣∣∣FT−, N (k)
T = 0

)
= TQ

(k)
0 . (3.4)
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3 Analysis on Fund Attractiveness Risk-Return Trade-off

The limit on the variance is

lim
M→∞

Var
(
G

(k)
T

∣∣∣FT−, N (k)
T = 0

)
= 0. (3.5)

As already discussed in Donnelly et al. (2014), with a finite pool size, the ex-

pected rate of survival gain of a member is always less than her own probability

of death in the interval [0, T ]. As the pool enlarges, all members benefit from

an increased expected rate of survival gain with reduced uncertainty. With a

pool size approaching infinity, every member earns survival gain at a rate that

approaches her own death probability and uncertainty is eliminated. Participat-

ing in an annuity overlay fund with infinite pool is thus analogous to buying an

insurance from insurance company, with which the insurer pays the insured a

guaranteed rate of return that equals the insured’s death probability conditional

on survival. There is no randomness in the payment amount and no one else is

involved.

B. Effect of Age on Expected Survival Gain

Consider an arbitrary member k of the fund. Taking differentiation on the ex-

pected survival gain w.r.t. her probability of death TQ
(k)
0 , we have

∂

∂TQ
(k)
0

E
(
G

(k)
T

∣∣∣FT−, N (k)
T = 0

)
= W

(k)
T−

(
1− TQ

(k)
0 W

(k)
T−∑M

m=1 TQ
(m)
0 W

(m)
T−

)2

, (3.6)

which is strictly positive, suggesting that an older member is allocated a higher

expected rate of survival gain than a younger member, provided that both make

the same investment. This is no surprise. Directly observing equation (3.1), a

member’s expected survival gain is always some fraction of the member’s own

death probability times her wealth, i.e. some fraction of the term TQ
(k)
t W

(k)
T−.

Older members, who have a higher death probability, straightforwardly obtain a

higher expected survival gain.
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3 Analysis on Fund Attractiveness Risk-Return Trade-off

C. Effect of Age on Variance of Survival Gain

Similarly, taking differentiation on the variance of the survival gain,

∂

∂TQ
(k)
0

Var
(
G

(k)
T

∣∣∣FT−, N (k)
T = 0

)

=

2TQ
(k)
0

(
W

(k)
T−

)2 (∑M
m=1,m 6=k TQ

(m)
0 W

(m)
T−

)(∑M
m=1,m6=k

(
W

(m)
T−

)2
TQ

(m)
0

)
(∑M

m=1 TQ
(m)
0 W

(m)
T−

)3 ,

(3.7)

which is strictly positive, indicating that an older member faces larger variance

on the survival gain amount. Recall that conditional on survival at time T , the

arbitrary member k earns the fraction TQ
(k)
0 W

(k)
T−∑M

m=1 TQ
(m)
t W

(m)
T−

of the random amount that

flows into the notional mortality account.The older the member is, the larger the

fraction of the random amount in the notional mortality account is entitled as

her survival gain, which straightforwardly means the member is bearing more

uncertainty in the survival gain amount.

Combining observations B and C, older members in the fund are allocated a

higher return and at the same time face a higher risk than younger members. In

other words, older members are involuntarily facing a risk-return trade-off at a

larger magnitude.

D. Effect of Wealth on Expected Survival Gain

Taking differentiation on the expected survival gain w.r.t. the wealth of member

k yields

∂

∂W
(k)
T−

E
(
G

(k)
T

∣∣∣FT−, N (k)
T = 0

)
=
TQ

(k)
0 W

(k)
T−
∑M

m=1,m6=k TQ
(m)
0 W

(m)
T−∑M

m=1 TQ
(m)
0 W

(m)
T−

(
1− TQ

(k)
0∑M

m=1 TQ
(m)
0 W

(m)
T−

)
, (3.8)

which is strictly positive. That is, a member who invests more wealth into the

fund is allocated a higher expected survival gain than a member who invests less,

given that both are of the same age. This is intuitively true, an individual who
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3 Analysis on Fund Attractiveness Risk-Return Trade-off

invests more earns naturally a higher return in absolute terms.

On the other hand, if we consider the rate of survival gain instead of the absolute

amount of survival gain, we obtain

∂

∂W
(k)
T−

E

(
G

(k)
T

W
(k)
T−

∣∣∣∣∣FT−, N (k)
T = 0

)
=
−
(
TQ

(k)
0

)2∑M
m=1,m6=k TQ

(m)
0 W

(m)
T−(∑M

m=1 TQ
(m)
0 W

(m)
T−

)2 , (3.9)

which is strictly negative, implying that a member who invests more is allocated

a smaller rate of survival gain than a member who invests less. The contrasting

results from equations (3.8) and (3.9) is explained by that, as the wealth of

a member increases, while her survival gain increases accordingly, the rate of

increase of her survival gain is slower than the rate of increase of her wealth

itself.

E. Effect of Wealth on Variance of Survival Gain

Lastly, take differentiation on the variance w.r.t. the wealth of member k,

∂

∂W
(k)
T−

Var
(
G

(k)
T

∣∣∣FT−, N (k)
T = 0

)

=

(
TQ

(k)
0 W

(k)
T−∑M

m=1 TQ
(m)
0 W

(m)
T−

)2

 M∑
m=1,
m 6=k

(
W

(m)
T−

)2
TQ

(m)
0


(

1−
2 · TQ(m)

0 W
(k)
T−∑M

m=1 TQ
(m)
0 W

(m)
T−

)
.

(3.10)

The expression in equation (3.10) is positive if the wealth of member k satisfies

W
(k)
T− <

∑M
m=1,m 6=k TQ

(m)
0 W

(m)
T−

TQ
(k)
0

. Note that this is a condition that generally holds in

practice, as long as the pool is not too small and member k is not very much older

than all other members. (For instance, such condition would be very unlikely

to be violated with a pool of a hundred members.) Under this mild condition,

a member who invests more wealth faces a larger variance on her survival gain

amount. In the remainder of this chapter we consider only this usual case.

From observations D and E we come up with two cases. The first case is to

consider return as the expected amount of the survival gain. As members who

invest more wealth into the fund are awarded a higher expected survival gain
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along with a larger variance on the gain, members can therefore influence the

magnitude of the risk-return trade-off through decision on the wealth amount to

be invested. By investing more, members face a risk-return trade-off at a larger

magnitude, vice versa. The second case is that one instead considers return in

terms of the expected rate of survival gain. As shown above, members who invest

more wealth are entitled to a lower return, despite their risk being higher. In

this regard, investing less is always more favourable.

The observations above are summarized in Table 3.2.

Factors

Increase in
Pool Size

Increase in
Age

Increase in
Wealth

Expected
survival gain

Increase Increase Increase

Expected rate of
survival gain

Increase Increase Decrease

Variance of
survival gain

Decrease Increase
Increase in
usual cases

Table 3.2: Summary of observations.

3.2 Expected Change in Utility

From the observations above, members of the annuity overlay fund with different

wealth-mortality profiles face some risk-return trade-off at different magnitudes.

Our question is, given individuals’ different profiles, and hence the corresponding

different magnitudes of the trade-off, whether certain groups would find the fund

more attractive than the others. For example, given the same wealth amount is

invested, an older individual might value the fund less than a younger individual,

if she is more concerned with the higher risk that she faces; or that the older

individual might value the fund more than the younger individual, if she puts

more value on the higher expected return that she receives. This depends, among

others, on the members’ perception on wealth as well as their attitude towards

risks.

To quantify our problem, we conduct an analysis under the framework of ex-

pected utility, where an individual’s valuation on wealth is described by her
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utility function on wealth, and her risk-aversion level can be represented by the

absolute risk aversion (ARA) coefficient.

Denote the utility function of an arbitrary member k to be uk(·), so that uk(W )

is the utility offered to the individual from some wealth amount W . We consider

the expected change in utility for an arbitrary member k due to pooling risks

through the fund. For member k, who invests in the annuity overlay fund in the

time interval [0, T ], her wealth at time T before pooling risks is WT− and that

after pooling risks is WT . Given information at time 0 and survival at time T ,

the concerned quantity is

E
[
uk

(
W

(k)
T

)
− uk

(
W

(k)
T−

) ∣∣∣FT−, N (k)
T = 0

]
. (3.11)

Recall that the survival gain for a fund member is always non-negative, i.e.{
W

(k)
T −W

(k)
T−

∣∣∣N (k)
T = 0

}
≥ 0, hence her expected change in utility condition on

survival is also always non-negative. With this in mind, from here on we use the

terms expected change in utility and expected increase in utility interchangeably.

If the expected increase in utility for one member is greater than that for another

member, then the former member would find the fund more attractive, in the

sense that she benefits from a larger increase in utility in expectation, vice versa.

Denote by u′k(W ) and u′′k(W ) respectively the first and second order derivative

of uk(W ) w.r.t. W .

Proposition 3.1 Given information at time 0 and survival upon the terminal

time T , the expected change in utility for member k due to pooling risks in the

annuity overlay fund can be approximated using the mean and variance of the

survival gain amount, by

E
[
uk

(
W

(k)
T

)
− uk

(
W

(k)
T−

) ∣∣∣FT−, N (k)
T = 0

]
≈u′k

(
W

(k)
T−

)E(G(k)
T

∣∣∣FT−, N (k)
T = 0

)
−
Ak

(
W

(k)
T−

)
2

Var
(
G

(k)
T

∣∣∣FT−, N (k)
T = 0

)
(3.12)

where Ak(W ) := −u′′k(W )

u′k(W )
is the ARA coefficient when member k has wealth W ,

and E
(
G

(k)
T

∣∣FT−, N (k)
T = 0

)
and Var

(
G

(k)
T

∣∣FT−, N (k)
T = 0

)
are as given in equa-

tions (3.1) and (3.2).
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Proof. Applying Taylor expansion up to second order on uk

(
W

(k)
T

)
around W

(k)
T−,

uk

(
W

(k)
T

)
≈uk

(
W

(k)
T−

)
+ u′k

(
W

(k)
T−

)(
W

(k)
T −W

(k)
T−

)
+

1

2
u′′k

(
W

(k)
T−

)(
W

(k)
T −W

(k)
T−

)2
.

Note that the goodness of the approximation depends on the magnitude of W
(k)
T −

W
(k)
T−. The omitted higher order terms are small, as long as there is not a large

amount of death in the pool in the time interval [0, T ] such that the difference

between W
(k)
T and W

(k)
T− is small. Taking expectation conditional on information

at time 0 and on survival at time T ,

E
[
uk

(
W

(k)
T

)
− uk

(
W

(k)
T−

) ∣∣∣FT−, N (k)
T = 0

]
≈u′k

(
W

(k)
T−

)
E
(
W

(k)
T −W

(k)
T−

∣∣∣FT−, N (k)
T = 0

)
+

1

2
u′′k

(
W

(k)
T−

)
E
[(
W

(k)
T −W

(k)
T−

)2 ∣∣∣FT−, N (k)
T = 0

]
=u′k

(
W

(k)
T−

)
E
(
G

(k)
T

∣∣∣FT−, N (k)
T = 0

)
+

1

2
u′′k

(
W

(k)
T−

)
Var

(
G

(k)
T

∣∣∣FT−, N (k)
T = 0

)
=u′k

(
W

(k)
T−

)E(G(k)
T

∣∣∣FT−, N (k)
T = 0

)
+

u′′k

(
W

(k)
T−

)
2u′k

(
W

(k)
T−

)Var
(
G

(k)
T

∣∣∣FT−, N (k)
T = 0

) .
2

Note that u′k

(
W

(k)
T−

)
, which represents the marginal utility for member k from

her wealth W
(k)
T−, is positive for any W

(k)
T− > 0 with a sensible utility function.

Further, assuming member k is risk-averse, then her ARA coefficient Ak

(
W

(k)
T−

)
is also positive for any wealth W

(k)
T− > 0. Approximation (3.12) can thus be

considered separately in two parts as follows: the first term is the expected

increase in utility rewarded by the expected survival gain, whereas the second

term is the expected decrease in utility arisen from the variance of the survival

gain.

The magnitude of the overall expected change in utility depends on the mag-

nitude of the ARA coefficient Ak

(
W

(k)
T−

)
. When Ak

(
W

(k)
T−

)
is small, meaning

member k is less risk averse and variation on the survival gain amount mat-

ters less to her, the expected increase in utility is higher, indicating a higher

24



3 Analysis on Fund Attractiveness Expected Change in Utility

attractiveness of the fund to member k. Contrarily, when Ak

(
W

(k)
T−

)
is large,

meaning member k is more sensitive to the uncertainty on the survival gain, her

expected increase in utility is smaller and the fund appears less attractive to

her. Using the ARA coefficient as a measure of an individual’s attitude towards

risk, we compare the expected increase in utility for fund members with different

risk-mortality profiles under different risk appetites.

To proceed with our analysis, we consider two members in the fund, k1 and k2,

who have respectively probability of death TQ
(k1)
0 and TQ

(k2)
0 in the time interval

[0, T ], and own W
(k1)
T− and W

(k2)
T− at time T before pooling risks through the fund.

Further, member k1 values wealth according to the utility function uk1(W ), and

whose attitude towards risk given some wealth W is characterized by the ARA

coefficient Ak1 (W ), whereas member k2 values wealth according to the utility

function uk2(W ) and whose ARA coefficient given some wealth W is Ak2 (W ).

Proposition 3.2 Member k1 and member k2 obtain equal expected change in

utility through participating in the fund in the time interval [0, T ] if and only if

Ak1

(
W

(k1)
T−

)
= f · Ak2

(
W

(k1)
T−

)
+ g, (3.13)

where

f =
u′
(
W

(k2)
T−

)
u′
(
W

(k1)
T−

) · Var
(
G

(k2)
T

∣∣∣FT−, N (k2)
T = 0

)
Var

(
G

(k1)
T

∣∣∣FT−, N (k1)
T = 0

) and

g =
2 · E

(
G

(k1)
T

∣∣∣FT−, N (k1)
T = 0

)
Var

(
G

(k1)
T

∣∣∣FT−, N (k1)
T = 0

) − u′
(
W

(k2)
T−

)
u′
(
W

(k1)
T−

) · 2 · E
(
G

(k2)
T

∣∣∣FT−, N (k2)
T = 0

)
Var

(
G

(k1)
T

∣∣∣FT−, N (k1)
T = 0

) .
The curve (3.13), which is a straight line on the Ak1

(
W

(k1)
T−

)
− Ak2

(
W

(k2)
T−

)
plane, is termed as the “equivalence curve” for members k1 and k2 in the sequel.

If Ak1

(
W

(k1)
T−

)
< f ·Ak2

(
W

(k2)
T−

)
+g, member k1 obtains a higher expected change

in utility then member k2 and hence would find the fund more attractive than

member k2. If Ak1

(
W

(k1)
T−

)
> f · Ak2

(
W

(k2)
T−

)
+ g, the opposite happens.

Proof. For members k1 and k2 to have the same expected change in utility, use

25



3 Analysis on Fund Attractiveness Expected Change in Utility

Proposition 3.1 and equate the expressions for the two members, that is,

u′k1

(
W

(k1)
T−

)
·

E(G(k1)
T

∣∣∣FT−, N (k1)
T = 0

)
−
Ak1

(
W

(k1)
T−

)
2

Var
(
G

(k1)
T

∣∣∣FT−, N (k1)
T = 0

)
=u′k2

(
W

(k2)
T−

)
·

E(G(k2)
T

∣∣∣FT−, N (k2)
T = 0

)
−
Ak2

(
W

(k2)
T−

)
2

Var
(
G

(k2)
T

∣∣∣FT−, N (k2)
T = 0

) .
Rearranging terms gives the statement.

Similarly, for member k1 to obtain a higher(lower) expected change in utility

than member k2, replace the equality sign by the greater-than(smaller-than)

sign, then rearrange terms. (The assumption that the marginal utility u′(W ) is

strictly positive for any W applies.) 2

slope=f

0

g

0
Ak2

 W0
(k2)



A
k 1

  W
0(k

1)
 

Member k2 benefits more

Member k1 benefits more

Figure 3.1: Example equivalence curve (black line).

An example of the equivalence curve on the Ak1

(
W

(k1)
T−

)
− Ak2

(
W

(k2)
T−

)
plane

proposed in Proposition 3.2 is sketched in Figure 3.1. An equivalence curve has

a slope of f , which is strictly positive, and intercepts the y-axis at g. When the

risk aversion levels of the two members k1 and k2, represented by Ak1

(
W

(k1)
T−

)
and Ak2

(
W

(k2)
T−

)
, fall on the equivalence curve, both members benefits equally

from the fund, in the sense that both obtain the same expected change in utility.
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If the combination of the ARA coefficients of the two members lies above the

equivalence curve, member k1 benefits more than member k2 in terms of the

expected change in utility, vice versa.

As we see, the equivalence curve given in Proposition 3.2 depends on the marginal

utility from wealth of one member relative to that of the other member, repre-

sented by the ratio of the terms u′k1

(
W

(k1)
T−

)
and u′k2

(
W

(k2)
T−

)
in the expressions

of f and g.

Two specific cases will be considered in the numerical illustrations in Section 3.3,

for which we give a description below.

Case 1: Same increase in utility per unit increase in wealth

The first case is that, the two members k1 and k2 benefits from an equal increase

in utility per unit increase in their respective wealth, or that their marginal

utility from their respective wealth amount is the same. This is represented by

u′k1

(
W

(k1)
T−

)
= u′k2

(
W

(k2)
T−

)
.

Recall that the first term in approximation (3.12) is the expected increase in

utility rewarded by the expected survival gain. This term has the coefficient

being u′k

(
W

(k)
T−

)
, the marginal utility from wealth. For different members who

value wealth in different ways, namely assigning different marginal utility to

their wealth, the same expected survival gain from the fund would reward them

different expected increase in utility.

In the specific case that the two members k1 and k2 assign the same marginal

utility to their wealth, their expected increase in utility contributed from the

expected survival gain can be compared by directly comparing the magnitude of

their expected survival gain. Further, if the expected survival gain for the two

members are also the same, then the difference between their overall expected

change in utility is determined by the difference in the second term of approxima-

tion (3.12), namely the risk aversion level as well as the variance on the survival

gain of the two members.
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Case 2: Same increase in utility per percentage increase in wealth

The second case is that, the two members k1 and k2 benefit from an equal increase

in utility per percentage increase in their respective wealth. Mathematically, this

is u′k1

(
W

(k1)
T−

)
·W (k1)

T− = u′k2

(
W

(k2)
T−

)
·W (k2)

T− . For instance, suppose member k1

has wealth 1000 and member k2 has wealth 2000, the two members benefit from

the same increase in utility if member k1’s wealth is increased by 10 and that of

member k2 is increased by 20.

Again, take look at the first term of approximation (3.12). This term can be

viewed as

u′k

(
W

(k)
T−

)
E
(
G

(k)
T

∣∣∣FT−, N (k)
T = 0

)
=u′k

(
W

(k)
T−

)
·W (k)

T− · E

(
G

(k)
T

W
(k)
T−

∣∣∣∣∣FT−, N (k)
T = 0

)
. (3.14)

This is to say, in case two members k1 and k2 benefit from the same increase in

utility per percentage increase in wealth, then their expected increase in utility

contributed from the expected survival gain can be compared by simply con-

sidering their expected rate of survival gain. Further, if the expected rate of

survival gain for the two members are equal, then the difference between their

overall expected change in utility is determined again only by the risk aversion

level and variance on the survival gain of the two members.

3.3 Numerical Illustrations

3.3.1 Mortality Model

Germany is taken as the reference country and its data is used for the subsequent

parametrizations and illustrations.

For the mortality model, we employ the Gompertz model, under which the force

of mortality of an individual at age x, denoted by λx, has the form

λx =
1

b
exp

(
x−m
b

)
, (3.15)
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where b,m > 0 are some constants. Here the parameter m is the modal age at

death, whereas b is regarded as the dispersion coefficient.

The model is fitted to the 2017 data on German population at ages 65-110 avail-

able from the Human Mortality Database (HMD). For parametrization, death

rate is assumed to follow Poisson distribution, and correspondingly the loss func-

tion is set as

−
∑

(Death count · log λx − Exposure · λx) . (3.16)

Upon minimizing the loss function, the model is parametrized with m = 88.13

and b = 8.66. The fitted mortality curve together with relevant information on

the fitted model are given in Figure 3.2.

3.3.2 Equivalence Curves

The portfolio of members is set as following: there exist 10 members at each of

the age in the range 65-94, the total number of members is hence M = 300. All

members owns a wealth amount of 1 000 at time T before pooling risks unless

otherwise specified.

By inspecting the equivalence curve, we examine the interaction between the

ARA coefficients of two members, k1 and k2, with which either one would benefit

from the fund equally or differently than the other member in terms of the

expected change in utility.

Age Effect

The first part of the example considers that the two members k1 and k2 are at

different ages and invest the same amount of wealth 1 000 into the fund. We fix

member k2 to be at age 65. Further, we consider the case discussed on pages

27-28: both members assign the same marginal utility to their wealth.1 In Figure

3.3a are the resulting equivalence curves on the Ak1

(
W

(k1)
T−

)
−Ak2

(
W

(k2)
T−

)
plane

upon varying the age of member k1 from 65 to 94. Figures 3.3b and 3.3c separate

1Since here both members invest the same amount of wealth, the discussed case 1 and case
2 on pages 27-28 are equivalent.
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(c) One-year mortality rate w.r.t. age.
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(d) Survival probability w.r.t. time for an
individual aged 65.

Figure 3.2: Information on fitted mortality model.

30



3 Analysis on Fund Attractiveness Numerical Illustrations

the equivalence curves in Figure 3.3a into two groups, which are provided for a

clearer inspection.

To understand Figure 3.3a, we start from the blue line, which is the equivalence

curve when both members k1 and k2 are at age 65 and we take this as the

reference line. Since the two members have the same wealth-mortality profile,

their expected survival gain from the fund as well as the variance on the survival

gain to be faced are identical. In this case, the two members experience the

same expected change in utility if and only if the two members have the same

attitude towards risk, characterized by the same ARA coefficient. Therefore the

equivalence curve is simply the straight line Ak1

(
W

(k1)
T−

)
= Ak2

(
W

(k2)
T−

)
. If, for

example, member k1 is less risk averse than member k2, that is, Ak1

(
W

(k1)
T−

)
<

Ak2

(
W

(k2)
T−

)
, corresponding to the region underneath the blue equivalence curve,

member k1 is less sensitive to the variance of the survival gain and hence she

benefits from a higher expected increase in utility through participating in the

fund than member k2.

Then, consider now that the two members are of different ages. Suppose member

k1 is one year older, being at age 66. The corresponding equivalence curve is

coloured red in Figure 3.3b for easy inspection. As shown, the red equivalence

curve is less steep and intersects with the blue referencing curve at a point close

to (2.24, 2.24).

In our current setting where u′k1

(
W

(k1)
T−

)
= u′k2

(
W

(k2)
T−

)
, the slope of the equiva-

lence curve is simply the ratio of the variance of survival gain of the two members

under consideration (refer to equation (3.13)). Comparing to the blue reference

line, the flatter slope of the red equivalence curve is a manifestation of the fact

that, relative to member k2, now the variance of survival gain faces by member

k1 becomes larger.

The flatter red equivalence curve from Figure 3.3b can be comprehended in two

parts. Suppose both members k1 and k2 are slightly risk averse, say the ARA

coefficients for both are below 2.24. Both members are less concerned with the

variation of the survival gain amount, and the overall expected change in utility

is driven mainly by the non-negative expected survival gain. It is known from

Section 3.1 observation B that, member k1, who is older than member k2, is

rewarded a higher expected survival gain from the fund. Hence, given the same

risk aversion level for both members, member k1 benefits more in terms of utility
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(c) Selected equivalence curves with mem-
ber k1’s age from 71 to 94.

Figure 3.3: Equivalence curves for members k1 and k2, assuming both investing
a wealth of 1000 and member k2 is 65 years old. The numbers on the right are
the assumed age of member k1 for the corresponding equivalence curves.
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than member k2. In other words, for both members to obtain the same expected

change in utility, member k1 must be more risk averse than member k2, so that

she is more sensitive to the variation of the survival gain, reflected by that, the red

line is above the blue line in the region Ak1

(
W

(k1)
T−

)
, Ak2

(
W

(k2)
T−

)
< 2.24. On the

contrary, if both members are rather risk averse, where their ARA coefficients are

greater than 2.24, both members are now more concerned with the uncertainty

of the survival gain amount. From Section 3.1 Observation C, the older member

k1 faces a larger variance on the survival gain amount. Therefore, for both

members to experience equal expected change in utility, member k1 must be less

risk averse than member k2, so that she is less sensitive to the higher variation

of the survival gain, reflected by that, the red line is below the blue line in the

region Ak1

(
W

(k1)
T−

)
, Ak2

(
W

(k2)
T−

)
> 2.24.

Similar arguments hold when member k1 is further older, being at age 67, 68, 69

and 70. See Figure 3.3b for the various equivalence curves highlighted in different

colours. The older the member k1 is, the flatter the equivalence curve becomes.

For example, when member k1 is 67-years-old, the corresponding equivalence

curve, which is the green curve, shifts further up for Ak1

(
W

(k1)
T−

)
, Ak2

(
W

(k2)
T−

)
small, which is due to the higher expected survival gain; and it shifts further

down for Ak1

(
W

(k1)
T−

)
, Ak2

(
W

(k2)
T−

)
large, which is due to the higher variance on

the survival gain.

As member k1 turns even older, after age 71, the equivalence curve shifts down-

ward for all Ak2

(
W

(k2)
T−

)
. See Figure 3.3c. This is explained by that, crossing

the age 70, the uncertainty on the survival gain faced by member k1 is growing

quickly enough that, comparing to being one year younger, member k1 must al-

ways be less risk averse so that she and member k2 experience the same expected

change in utility.

Wealth Effect

We proceed to the next part, where the two members k1 and k2 are of the same

age and invest different amounts of wealth into the fund. Members k1 and k2

are both chosen to be at age 80, and member k2 invests 1 000 into the fund. We

consider the two special cases presented on pages 27-28 separately.
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Case 1 Suppose the increase in utility per unit increase in initial wealth is the

same for both members k1 and k2 that is, u′k1

(
W

(k1)
T−

)
= u′k2

(
W

(k2)
T−

)
. Figure 3.4

is the equivalence curve upon varying the wealth from member k1.
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Figure 3.4: Equivalence curves for members k1 and k2, assuming both are 80
years old, member k2 invests 1 000 and the two members enjoy the same increase
in utility per unit increase in wealth. The numbers on the right are the assumed
wealth of member k1 for the corresponding equivalence curves.

To begin with, we have again the blue line, Ak1

(
W

(k1)
T−

)
= Ak2

(
W

(k2)
T−

)
, as the

reference, which is the equivalence curve when the wealth of member k1 is 1 000,

i.e. the two members’ wealth-mortality profiles are identical.

As illustration, take the case that member k1 invests 750 whereas member k2

invests 1 000. The resulting equivalence curve is the red line in Figure 3.4.

Recall from Section 3.1 observations D and E that, a member who invests less

into the fund is allocated a smaller expected survival gain from the fund and at

the same time faces a smaller variance on the survival gain amount. Comparing

with the blue reference line, it can be seen that, if both members are slightly

risk averse, with Ak1

(
W

(k1)
T−

)
, Ak2

(
W

(k2)
T−

)
< 0.49, the red line lies below the

blue line. The same argument as that in the discussion for Figure 3.3a applies.

Among the expectation and variance of survival gain, both members are relatively

less sensitive to the variance and more concerned with the expected survival

gain, while member k1 earns a lower expected survival gain. Therefore, she has

to be less risk averse than member k2 in order that both experience the same
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expected change in utility. If both members are more sensitive to risk, with

Ak1

(
W

(k1)
T−

)
, Ak2

(
W

(k2)
T−

)
> 0.49, since member k1 faces a smaller variance, she

must be more risk averse than member k2 such that both experience the same

expected change in utility.

In the contrary case that member k1 invests more than member k2 into the fund,

the reverse arguments hold and this is represented by the flatter slope of the

corresponding resulting equivalence curves.

Case 2 Now suppose the increase in utility per percentage increase in initial

wealth is the same for both members k1 and k2, that is, u′k1(W
(k1)
T− ) · W (k1)

T− =

u′k2(W
(k2)
T− ) ·W (k2)

T− . Figure 3.5 are the equivalence curves upon varying the wealth

from member k1 in this case.
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Figure 3.5: Equivalence curves for members k1 and k2, assuming both are 80
years old, member k2 invests 1 000 and the two members enjoy the same increase
in utility per percentage increase in wealth. The numbers on the right are the
assumed wealth of member k1 for the corresponding equivalence curves.

Here we obtain a graph very different from that in case 1. All equivalence curves

starts from the origin, which is the situation that both members k1 and k2 are

risk-neutral. If the two members are risk averse, there is no crossing of curves,

no matter how much member k1 invests.

In the current scenario, as already discussed on page 28, the difference in the part

of expected increase in utility contributed from the return is caused only by a
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different expected rate of survival gain. Let us again take the case that member k1

invests 750 and member k2 invests 1 000 as illustration. Again from observation

D in Section 3.1, now that member k1 invests less than member k2 into the

fund, she therefore earns a higher expected rate of survival gain than member

k2. At the same time, member k1 faces a smaller variance of the survival gain

amount. A higher expectation together with a smaller variance straightforwardly

implies that, the fund is favouring member k1 in both aspects. Therefore, the

two members can experience the same expected change in utility only if the risk

aversion of member k1 is higher than member k2. This is demonstrated by that

the red equivalence curve is lying above the blue reference line, or, more generally,

above all other equivalence curves, with which member k1 invests more than 750.

Pool Size Effect

Before ending the numerical illustration, we look at the influence of the total

number of members in the fund. The portfolio of members remains the same as

above, except that the number of members at each age is increased to 50, hence

the fund now consists of a total of M = 1500 members.

Suppose members k1 and k2 both invest 1 000 into the fund. Figure 3.6a is the

graph of the updated equivalence curves upon fixing member k2 to be 65 years

old and varying member k1’s age. While at first glance the graph looks very

similar to Figure 3.3a, pay attention to that the scale of the x- and y-axes is

different. Figures 3.6b and 3.6c are a zoom-in from Figure 3.6a with various

assumed ages for member k1, the scale of the x-axis in which is set to be the

same as that in Figure 3.3a. Directly comparing with Figure 3.3b and 3.3c, it is

clear that now all equivalence curves are shifted upwards, except if member k1

is equally old as member k2. The upward shift is due to the lowered variance of

the survival gain brought by a larger pool size (refer to observation A in Section

3.1). Since now the risk for all members are small, whereas the older member

k1 receives an expected gain that is higher than that for k2, intuitively member

k1 now benefits more from the fund, unless she is much more risk averse than

member k2.

Likewise, suppose members k1 and k2 are both 80 years old, we fix the wealth of

member k2 to be 1 000 and vary the wealth of member k1.

If we assume that both members benefit from the same increase in utility per
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(b) Zoom-in from Figure 3.6a with mem-
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(c) Zoom-in from Figure 3.6a with member
k1 set as 71-94 years old.

Figure 3.6: Equivalence curves for members k1 and k2, when the pool is enlarged
to M = 1500 members. Assume both members invest a wealth of 1000 and
member k2 is 65 years old. The numbers on the right are the assumed age of
member k1 for the corresponding equivalence curves.
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3 Analysis on Fund Attractiveness Numerical Illustrations

unit increase in wealth, we arrive at Figure 3.7a for the updated equivalence

curves. Again, the graph has a form identical to Figure 3.4, yet see that the

scale of the x- and y-axes is different. The same reasoning applies. Comparing

to Figure 3.4, the equivalence curves for member k1 investing more than 1 000

has shifted up, because member k1 benefits from a drop in the variance of the

survival gain to a greater extent than member k2. The equivalence curves shift

down in the opposite case that member k1 invests less than member k2.

Under the other assumption that both members benefit from the same increase

in utility per percentage increase in wealth, the updated equivalence curves are as

displayed in Figure 3.7b. Upon comparing, this is almost the same as Figure 3.5

and no apparent difference is observable. Recall that the slope of an equivalence

curve is the ratio of the variance of survival gain faced by the two members. Here,

the strong similarity between the two figures is indicating that, an enlarged pool

size has nearly no effect on the ratio, equivalent to that the variances of the

survival gain faced by the two members drop at a similar rate.
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Figure 3.7: Equivalence curves for members k1 and k2, when the pool is enlarged
to M = 1500 members. Assume both are 80 years old and member k2 invests
1 000. The numbers on the right are the assumed wealth of member k1 for the
corresponding equivalence curves.
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3.4 Summary

In this chapter, we have understood the influence of a member’s wealth-mortality

profile on her actuarial gain obtained from the annuity overlay fund, conditional

on that the concerned member survives until the terminal time. The expected

change in utility for a member due to pooling risks through the annuity overlay

fund is taken as the measure of the attractiveness of the fund, and a comparison

on the fund’s attractiveness between two members with heterogeneous wealth-

mortality profiles as well as different risk aversion levels is conducted.

The contents in this chapter can be, among others, used by fund providers for

forecasting the popularity of the annuity overlay fund among individuals with

different wealth-mortality profiles, given that their utility functions on wealth

and risk aversion levels are available. For instance, if elderlies are known to

be significantly more risk averse than the young, the fund would be relatively

less welcomed by the elderlies, because of the larger variance on the survival

gain that elderlies face. The pool size also has a significant influence on the

attractiveness of the fund for individuals with different profiles. The larger the

pool is, the smaller the risk faced by all members is. Since the expected survival

gain increases with age, the annuity overlay fund with a large pool of members

is more attractive to the elderlies, as long as the old and the young are similarly

risk averse.

The analysis in this chapter focuses on the difference in expected utility gain of

fund members with heterogeneous wealth-mortality profiles, provided that their

risk aversion levels are known. The correlation between the risk aversion level

and the wealth-mortality profile of a member, while is crucial for applying the

contents in this chapter, is out of the scope of the topic and is not studied here.
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Chapter 4

Application in Retirement

Aspect

In this chapter, we investigate the possibility of applying the annuity overlay

fund to support retirement consumption. We are motivated to construct a way

of managing the annuity overlay fund, such that the fund imitates an annuity:

a stream of payment being constant in expectation is to be provided to fund

members.

With the proposed scheme, unlike with a conventional annuity, fund members

are no longer guaranteed some definite payments, but experience some level of

uncertainty in the payment amount. Only in expectation do members receive

a constant stream of payment as with an annuity. On the other hand, since

the annuity overlay fund is simply a mechanism pooling and redistributing the

wealth of members in each period, insurance companies bear theoretically no

risk in running the fund but act only as a fund manager, the risk capital that

companies have to bear is in turn very low. Therefore, applying such scheme in

retirement aspect, this can be regarded as the insurance companies transferring

the risk back to the insured (the retirees who are also the fund members), the

insured benefits not from the insurer’s protection but from the random actuarial

gain offered by the fund.

In the following, we describe the proposed operation method in details, with

which such constant expected payments can be achieved, afterwards provide

methodology on the calculations and also examine the level of uncertainty of the

payments.

Throughout the remainder of this chapter, each time interval is taken as one

year for simplicity in illustration. We consider the case where there is no risky

investment and wealth from all members grows at the same constant risk-free

rate, i.e. R
(k)
t = r for some constant r ≥ 0, for any arbitrary member k in the

fund and for any time t = 1, 2, 3, . . .. The results can be easily generalized to the
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4 Application in Retirement Aspect Fund Operation

case where wealth from all members is invested into the same portfolio consisting

also risky assets.

4.1 Fund Operation

To obtain a stream of benefit payment being constant in expectation over time,

we propose the following.

Consider that upon reaching the retirement age, an individual enters the fund

and invests an initial wealth amount into the fund. This amount grows with

the market return throughout the year. Clearly, at the end of the year, the

accumulated wealth would award the member some random survival gain upon

her survival, the expected amount of which being that calculated by equation

(3.1). This is directly paid out to the member as one part of the retirement

benefit payment.

After concluding a round of pooling in one year, the fund starts another round

of pooling for another year, where all members who have survived the past year

must remain in the fund and participate in the next round of pooling. At the

same time, the fund admits some new retirees into the fund to offset the drop in

number of members due to the perished members in the past year, so that the

pool size does not shrink relative to the past year.

Now, at the end of a year, for a surviving member, who is bound to participate

in the fund again in the next year, part of her wealth invested in the fund in the

past one year is to be withdrawn, so that the new amount of wealth remaining

in the fund for the next year is reduced. This withdrawal is paid back to the

member and constitutes the second part of the retirement benefit payment.

All in all, upon survival at each time point t where a round of pooling ends,

a member receives a lump-sum comprising of two elements: the survival gain

generated in the past year from the remaining wealth in fund, and the withdrawal

from the fund at time t. The withdrawal amounts are set in a way, such that

the two elements together form a stream of payment that is constant over time

in expectation. An illustration of the proposed mechanism is sketched in Figure

4.1.

This process goes on. From the perspective of the fund issuer, each year she
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4 Application in Retirement Aspect Fund Operation

Figure 4.1: Illustration of the proposed mechanism upon survival of a member.

is hosting a new round of pooling, where she has the surviving members from

the past year together with some newly entered retirees as fund members. From

the perspective of a fund member, she is receiving some retirement benefit each

year, which is the sum of the random survival gain and the fixed withdrawal,

until the time she perishes. In case of death, the member’s remaining wealth will

be distributed among the pool in accordance to the allocation principle of the

annuity overlay fund.1

The withdrawals are the core of the proposed mechanism and they are here for

two reasons. First, since individuals have no bequest motives (assumed at the

very beginning), at the end of the day, wealth invested into the fund should be

planned to be withdrawn and consumed at some time point, so as to maximize

utility from the money. Second, the withdrawals act as a control to regulate the

expected survival gain, the consequential decreasing wealth in the fund counter-

balances the increasing expected rate of survival gain, which makes a constant

stream of payment in expectation possible. Recall that according to the principle

of the annuity overlay fund, each member is assigned some percentage of her own

mortality rate as the expected rate of survival gain, so if all else unchanged, the

expected survival gain must increase (exponentially under most commonly used

mortality models) as the member ages.

The terminologies below will be involved in this chapter:

• “Retirement benefit” refers to the periodic payment to a surviving fund

1This means apparently a deceased member again also receives a small actuarial gain from
the period in which she passes away. However since actuarial gain upon death is not the focus
of this thesis, this is continued to be left out.
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4 Application in Retirement Aspect Infinite Pool

member, which is the sum of the fixed withdrawal amount and the random

survival gain.

• “Withdrawal strategy” refers to the set of remaining wealth amount in fund

(after withdrawal) w.r.t. time, which obviously determines the withdrawal

amount at each time point.

4.2 Infinite Pool

We start with the limiting case, where there are infinite members in the annuity

overlay fund.

Suppose time t = 0 is the time when an individual reaches the retirement age

Xr > 0 and enters the fund. At each subsequent time t = 1, 2, 3, . . ., where the

member will be at age Xr+t, one round of pooling completes and some retirement

benefit is paid to the member upon her survival. We assume that there is a

limiting age Xlim > Xr at which no individual can live beyond, therefore the last

payment time is at most at time τ = Xlim −Xr.

Recall that with an infinite pool, one member’s survival gain simply equals the

product of her probability of death and wealth amount, and is independent of

other members (refer to equations (3.4) and (3.5) and the discussions therein).

The superscript (k) is therefore unnecessary and is dropped in the following to

save us from the trouble of excessive notations.

Denote by W0 the initial wealth invested by the individual into the fund for

obtaining the later retirement benefits. Now we want to look for the remaining

wealth in the fund of the member w.r.t. time t, denoted by Wt > 0, such that

at each payment time, the withdrawal together with the expected survival gain

generated by the fund from the preceding period add up to the same amount.

The withdrawal is the difference between the remaining wealth at the previous

payment time rolled up with market return and the remaining wealth at the

current payment time. That is, denote the withdrawal amount at time t by

Dt ≥ 0, then Dt = Wt−1(1 + r)−Wt.

Mathematically, we want to look for the Wt’s, t = 1, 2, . . . , τ , such that the

retirement benefit Dt + E
(
G

(k)
t

∣∣∣Ft−1, N (k)
t = 0

)
remains the same for all t =

1, 2, . . . , τ .
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Here, the survival gain at time t for a member k is E
(
G

(k)
t

∣∣∣Ft−1, N (k)
t = 0

)
=

tQ
(k)
t−1W

(k)
t− with certainty (from equation (3.3)). In the current setting, tQ

(k)
t−1 is

the one-year death probability for the member when she is at age Xr + t − 1,

so tQ
(k)
t−1 = qXr+t−1, where qX is the standard actuarial notation for the one-year

death probability of an individual at age X, whereas W
(k)
t− = Wt−1(1 + r) is her

wealth in the fund before pooling at time t. Our goal is then equivalent to finding

the solution to the following system of linear equations:

Wt−1(1 + r)−Wt + qXr+t−1Wt−1(1 + r)

=Wt(1 + r)−Wt+1 + qXr+tWt(1 + r) (4.1)

for all t = 1, 2, . . . , τ − 1.

Clearly, the solution of a member’s wealth sequence Wt, t = 0, 1, 2, . . . , τ , is also

independent of other members and is without randomness.

Since there will be no more payment after time τ (as the member must have

perished before the next payment time), it makes sense to set Wτ = 0 so that

all remaining wealth of the member could be withdrawn and consumed before

deceasing and thus the retirement benefit can be maximized. Now we have τ − 1

unknowns with τ − 1 equations. Rearranging terms in the system of equations

(4.1), the system can be expressed in the matrix form

AW = B, (4.2)

where

A =

 a1,1 · · · a1,τ−1
...

. . .
...

aτ−1,1 · · · aτ−1,τ−1


with entries

ai,j =


2 + r + (1 + r)qXr+i for i = j,

−(1 + r)(1 + qXr+j) for i = j + 1,

−1 for i = j − 1,

0 otherwise ,
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4 Application in Retirement Aspect Finite Pool

W =


W1

W2

W3

...

Wτ−1

 and B =


W0(1 + r)(1 + qXr)

0

0
...

0

 .

The solution to W, which is what we look for, is thus A−1B.

With W being known, it is then straightforward to calculate the withdrawal

amounts at each payment time, by Dt = Wt−1(1 + r)−Wt for all t = 1, 2, . . . , τ ,

and the retirement benefit that is constant over time, which is

Dt + E
(
G

(k)
t

∣∣∣Ft−1, N (k)
t = 0

)
= Wt−1(1 + r)−Wt + qXr+t−1Wt−1(1 + r)

with any t = 1, 2, . . . , τ .

4.3 Finite Pool

We proceed to the more complicated case, where the pool size is finite. Since in

this case, each member’s expected survival gain depends on all other members’

wealth-mortality profile as well as the pool size, we must fix some restrictions

on managing the pool, so that the expected survival gain is controllable. In the

following, we first list the assumptions on members’ profiles an the requirements

on the fund management, then provide methodology to solve for the withdrawal

strategy under these settings.

4.3.1 Assumptions and Fund Management

Denote again by Xr > 0 the retirement age.

In order that a solution exists in the case of a finite pool, we assume the following:

1. There exists a limiting age Xlim > Xr, at which no individual can live

beyond.

2. The one-year death probability w.r.t. age remains unchanged throughout

time.
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4 Application in Retirement Aspect Finite Pool

Denote by τ := Xlim − Xr. The fund is to be managed in accordance to the

following:

1. The fund is allowed for members at age in {Xr, Xr + 1, . . . , Xlim − 1}.

2. At the time the fund is established, the actual age distribution of members

follows the theoretical survival probability. That is, denote the number of

members at the retirement age Xr by C ∈ N, then the number of members

at age Xr + t is close to C · tpXr for all t = 1, 2, · · · , τ − 1, where tpX is

the standard actuarial notation denoting the probability of an individual

aged X surviving the next t years. Further, members at each age invest an

amount according to the withdrawal strategy obtained from the upcoming

calculations.

3. At the beginning of each subsequent period, there is the same number of C

new members at age Xr joining into the fund due to retiring, and members

who attain the limiting age Xlim leave the fund automatically.

4. Free exit is prohibited, members leave the fund either because of death or

attaining the limiting age.

5. Upon entrance, new members decide an initial investment amount among

Z ∈ N choices of amounts permitted by the fund manager, as long as the

portion of new members investing in each amount remains the same in each

period. We term this set of choices as the “set of permissible initial wealth

amount” in the sequel.

6. All members follow the withdrawal strategy laid down.

With the assumptions and management regulations, the portfolio of fund mem-

bers can retain a similar form throughout time. This is possible particularly

because of point 3 above, that there are constantly the same amount of new

members at the same age entering the fund, and point 6, that all members are

restricted to act in some predetermined way.

4.3.2 Calculations

Consider for the time being the simple case, where the set of permissible initial

wealth amount is the singleton {W0 > 0}, so all new retirees entering the fund
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4 Application in Retirement Aspect Finite Pool

invest the same initial wealth W0 into the fund.

First note that, what is random in the setting is the number of surviving members

at each age in the fund. Given the assumption that the mortality rate w.r.t. age

does not change throughout time, the distribution of the number of members at

age Xr + t, t = 1, 2, . . . , τ − 1, remains unchanged at any time. Therefore, the

random number of members at age Xr+t at any time can be denoted by the same

random variable Lt. This further implies, given the withdrawal strategy fixed,

the total randomness experienced by any cohort at any time stays the same.

Consequently, for all cohorts the withdrawal strategy is also just the same.

The fund can now be considered simply as the following. At any time, there

exists τ groups in the fund, with each group being the members at age Xr + t

and investing some wealth amount Wt > 0 in the fund, t = 0, 1, . . . , τ − 1.

The number of members at age Xr + t is Lt, with L0 = C and Lt random for

t = 1, 2, . . . , τ − 1. The one-year mortality rate for members at age Xr + t is

qXr+t.

Same as in the case of an infinite pool, Wτ should naturally be zero, meaning all

remaining wealth in the fund is withdrawn upon the member surviving until age

Xlim and leaving the fund automatically. Our problem now is to solve for the

set of Wt’s, t = 1, 2, . . . , τ − 1, such that the withdrawal amount together with

the random survival gain is constant in expectation. For cleaner expression, the

vector (W1,W2, . . . ,Wτ−1), which is what we seek, is denoted by W throughout

the remaining calculations.

Proposition 4.1 For a finite pool, where there are C new members at age Xr

entering the fund at the beginning of every period and every new member invests

W0 upon entrance, the solution to the withdrawal strategy is W, with which

Wt−1(1 + r)−Wt + qXr+t−1Wt−1(1 + r) [1− qXr+t−1Wt−1Θ (W)]

=Wt(1 + r)−Wt+1 + qXr+tWt(1 + r) [1− qXr+tWtΘ (W)] (4.3)

is satisfied for all t ∈ [1, 2, . . . , τ − 1], where Wτ = 0 and

Θ (W)

=
∑

L1,L2,...,Lτ−1

∈{0,1,...,C}

1∑τ−1
n=0 qXr+nWnLn

τ−1∏
n=1

[(
C

Ln

)
(npXr)

Ln(1− npXr)
C−Ln

]
. (4.4)
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Proof. The probability that a member survives until age Xr + t given that she

enters the fund, i.e. surviving at age Xr, is tpXr . Hence, each member’s sur-

vival status after entering the fund for a period of time t follows the distribution

Ber(tpXr) with 1 being surviving and 0 otherwise. As members’ survival pro-

cesses are independent of each other’s (already assumed in the set up in Donnelly

et al. (2014)), we have Lt ∼ Bin(C, tpXr) and Lt’s are independent of each other

for all t = 1, 2, . . . , τ − 1.

Denote by G∗t the random survival gain for a member at age Xr + t for all

t = 1, 2, . . . , τ , the expectation of which is

E [G∗t ] =E
[
E
[
G∗t
∣∣L1, L2, . . . , Lτ−1

]]
=E

[
qXr+t−1Wt−

(
1− qXr+t−1Wt−∑τ

n=1 qXr+n−1Wn−Ln−1

)]
=E

[
qXr+t−1Wt−1(1 + r)

(
1− qXr+t−1Wt−1(1 + r)∑τ

n=1 qXr+n−1Wn−1(1 + r)Ln−1

)]
=qXr+t−1Wt−1(1 + r)

[
1− qXr+t−1Wt · E

[
1∑τ−1

n=0 qXr+nWnLn

]]
, (4.5)

where the first equality follows from equation (3.1).

Further denote by fL1,L2,...,Lτ−1(L1, L2, . . . , Lτ−1) the joint probability mass func-

tion of L1, L2, . . . , Lτ−1, fLt(Lt) the probability mass function of Lt for all t =

1, 2, . . . , τ − 1, and Θ (W) := E

[
1∑τ−1

n=0 qXr+nWnLn

]
. Then

Θ (W)

=
∑

L1,L2,...,Lτ−1

∈{0,1,...,C}

1∑τ−1
n=0 qXr+nWnLn

· fL1,L2,...,Lτ−1(L1, L2, . . . , Lτ−1)

=
∑

L1,L2,...,Lτ−1

∈{0,1,...,C}

1∑τ−1
n=0 qXr+nWnLn

·
τ−1∏
n=1

fLn(Ln), (4.6)

substituting the probability mass function of binomial distribution

fLt(Lt) =

(
C

Lt

)
(tpXr)

Lt(1− tpXr)
C−Lt
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for all t = 1, 2, . . . , τ − 1 gives equation (4.4).

Now we want to solve for the set of remaining wealth in fund W, such that at

each time point t the sum of withdrawals Dt = Wt−1(1+r)−Wt and the expected

survival gain is the same, that is,

Wt−1(1 + r)−Wt + E[G∗t ] = Wt(1 + r)−Wt+1 + E[G∗t+1] (4.7)

holds for all t = 1, 2, . . . , τ−1. the claim follows directly by substituting equations

(4.5) and (4.6) into equation (4.7). 2

When W is solved, the variance of the retirement benefit w.r.t. age, which is

simply the variance of the survival gain, can be derived.

Proposition 4.2 For a finite pool, where there are C new members at age Xr

entering the fund at the beginning of every period and every new member in-

vests W0 upon entrance, given the withdrawal strategy W, the variance of the

retirement benefit received by a member at age Xr + t+ 1 is

[qXr+tWt(1 + r)]2
[
Φ (W)− (qXr+tWtΘ (W))2 + qXr+tW

2
t (qXr+t − 1) Ψ (W)

]
,

(4.8)

where Θ (W) is defined as in equation (4.4),

Φ (W)

=
∑

L1,L2,...,Lτ−1

∈{0,1,...,C}

∑τ−1
n=0 qXr+nW

2
nLn(∑τ−1

n=0 qXr+nWnLn
)2 τ−1∏

n=1

[(
C

Ln

)
(npXr)

Ln(1− npXr)
C−Ln

]
. (4.9)

and

Ψ (W)

=
∑

L1,L2,...,Lτ−1

∈{0,1,...,C}

1(∑τ−1
n=0 qXr+nWnLn

)2 τ−1∏
n=1

[(
C

Ln

)
(npXr)

Ln(1− npXr)
C−Ln

]
.

(4.10)
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Proof. From equations (3.1) and (3.2),

Var
[
Gt+1

∣∣L1, L2, . . . , Lτ−1
]

=

(
qXr+tWt(1 + r)∑τ−1

n=0 qXr+nWn(1 + r)Ln

)2

·

(
τ−1∑
n=0

qXr+n (Wn(1 + r))2 Ln − qXr+t (Wt(1 + r))2
)

=

(
qXr+tWt∑τ−1

n=0 qXr+nWnLn

)2(τ−1∑
n=0

qXr+n (Wn(1 + r))2 Ln − qXr+t (Wt(1 + r))2
)

and

E
[
Gt+1

∣∣L1, L2, . . . , Lτ−1
]

=qXr+tWt(1 + r)

(
1− qXr+tWt(1 + r)∑τ−1

n=0 qXr+nWn(1 + r)Ln

)

=qXr+tWt(1 + r)

(
1− qXr+tWt∑τ−1

n=0 qXr+nWnLn

)
.

For all t = 1, 2, . . . , τ , the variance of the survival gain for a member at age

Xr + t+ 1 is

Var
[
G∗t+1

]
=E

[
Var

[
Gt+1

∣∣L1, L2, . . . , Lτ−1
]]

+ Var
[
E
[
Gt+1

∣∣L1, L2, . . . , Lτ−1
]]

= [qXr+tWt(1 + r)]2 E

[ ∑τ−1
n=0 qXr+nW

2
nLn(∑τ−1

n=0 qXr+nWnLn
)2
]

− q3Xr+tW
4
t (1 + r)2E

[
1(∑τ−1

n=0 qXr+nWnLn
)2
]

+ (qXr+tWt)
4 (1 + r)2

E[ 1(∑τ−1
n=0 qXr+nWnLn

)2
]
− E

[
1∑τ−1

n=0 qXr+nWnLn

]2
= [qXr+tWt(1 + r)]2 ·{

E

[ ∑τ−1
n=0 qXr+nW

2
nLn(∑τ−1

n=0 qXr+nWnLn
)2
]
− (qXr+tWt)

2 E

[
1∑τ−1

n=0 qXr+nWnLn

]2
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+ qXr+tW
2
t (qXr+t − 1)E

[
1

(
∑τ−1

n=0 qXr+nWnLn)2

]}
, (4.11)

where the second equality follows from equations (3.1) and (3.2).

Denote E

[ ∑τ−1
n=0 qXr+nW

2
nLn(∑τ−1

n=0 qXr+nWnLn
)2
]

=: Φ (W) and

E

[
1(∑τ−1

n=0 qXr+nWnLn
)2
]

=: Ψ (W) , the expressions of Φ (W) and Ψ (W) are

derived straightforwardly by following the same lines as in the derivation of

Θ (W) (refer to the derivation of equation (4.6)), from which we obtain equations

(4.9) and (4.10).

Substituting equations (4.6), (4.9) and (4.10) into equation (4.11) completes the

proof. 2

Unfortunately, observe that direct computation of Θ (W), Φ (W) and Ψ (W)

is challenging, if not infeasible, with reasonable τ and C. All three require

calculating and summing (C + 1)τ−1 terms, an amount that quickly explodes.

(τ is the number of payment times throughout the retirement duration, even

considering a simple yearly payment, τ would typically be of magnitude of tens,

whereas a sensible C would naturally be at least tens to hundreds.) In particular,

our goal to solve for W from equation (4.3), which is also embedded in Θ (W),

is impracticable.

To get over this complication, approximations for Θ (W), Φ (W) and Ψ (W) are

proposed.

Proposition 4.3 Θ (W), Φ (W) and Ψ (W) as defined respectively in equations

(4.4), (4.9) and (4.10) can be approximated by

Θ (W) ≈ 1

µ1

+
σ2
1

µ3
1

=: θ (W) , (4.12)

Φ (W) ≈ µ2

µ2
1

+ 3
µ2σ

2
1

µ4
1

− 4
σ12
µ3
1

=: φ (W) , and (4.13)

Ψ (W) ≈ 1

µ2
1

+ 3
σ2
1

µ4
1

=: ψ (W) , (4.14)
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where

µ1 =C
τ−1∑
n=0

qXr+nWn (npXr) ,

µ2 =C
τ−1∑
n=0

qXr+nW
2
n (npXr) ,

σ2
1 =C

τ−1∑
n=1

(qXr+nWn)2 (npXr) (1− npXr) ,

σ2
2 =C

τ−1∑
n=1

(
qXr+nW

2
n−1
)2

(npXr) (1− npXr) ,

σ12 =C
τ−1∑
n=1

q2Xr+nW
3
n−1 (npXr) (1− npXr) .

Proof. We give a proof for Θ (W) ≈ θ (W).

Denote by Y1 :=
∑τ−1

n=0 qXr+nWnLn. Obviously, E(Y1) =
∑τ−1

n=0 qXr+nWnE(Ln) =

µ1 and Var(Y1) =
∑τ−1

n=0 (qXr+nWn)2 Var(Ln) = σ2
1. (For discussion on distribu-

tions of Lt’s refer back to the proof of Proposition 4.1.)

Define the function g(x) = 1
x
. Denote by g′(x) and g′′(x) respectively the first

and second order derivative of g(x), so g′(x) = −1
x2

and g′′(x) = 2
x3

.

Apply Taylor approximation on g(Y1) around E(Y1) up to second order,2

g (Y1) ≈g (E (Y1)) + (Y1 − E(Y1))g
′(E(Y1)) +

1

2
(Y1 − E(Y1))

2g′′(E(Y1))

E(g(Y1)) ≈g(E(Y1)) + E [Y1 − E(Y1)] g
′(E(Y1)) +

1

2
E
[
(Y1 − E(Y1))

2
]
g′′(E(Y1))

=g(E(Y1)) +
1

2
Var(Y1)g

′′(E(Y1)).

Therefore,

Θ (W) ≈ 1

E(Y1)
+

Var(Y1)

E(Y1)3
.

2Expansion up to third order can also be done straightforwardly, when higher accuracy is
desired. (For this, one could make use of the following properties: cumulants are additive for
independent variables, and the third cumulant is homogeneous of degree 3.) Numerical trials
have however shown that, the difference in results between expansion up to second order and
third order is negligible even with very small C, and therefore only expansion to second order
is demonstrated here.
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Substituting E(Y1) = µ1 and Var(Y1) = σ2
1 yields approximation (4.12).

Approximations (4.13) and (4.14) are derived likewise. For Ψ (W), let function

g(x) = 1
x2

. For Φ (W), let function g(x, y) = y
x2

and apply Taylor expansion in

two variables. The relevant terms are derived from the following.

Denote by Y2 :=
∑τ−1

n=0 qXr+nW
2
nLn. E(Y2) = µ2 and Var(Y2) = σ2

2 are clear.

Also, Cov(Y1, Y2) =
∑τ−1

n=0 q
2
Xr+n

W 3
nVar(Ln) = σ12. 2

Using Proposition 4.3, we arrive at the following:

Proposition 4.4 For a finite pool, where there are C new members at age Xr

entering the fund at the beginning of every period and every new member invests

W0 upon entrance, the withdrawal strategy can be approximated by the vector

W, with which

Wt−1(1 + r)−Wt + qXr+t−1Wt−1(1 + r) [1− qXr+t−1Wt−1θ (W)]

=Wt(1 + r)−Wt+1 + qXr+tWt(1 + r) [1− qXr+tWtθ (W)] (4.15)

is satisfied for all t = 1, 2, . . . , τ − 1, where Wτ = 0 and θ (W) is defined as in

equation (4.12).

Proof. Substitute the approximation Θ (W) ≈ θ (W) into equation (4.3). 2

While equation (4.15) is not linear in Wt’s and there is no analytical solution

available, it can be solved easily by numerical methods.

With W now at hand, the variance of the retirement benefit can be approxi-

mated.

Proposition 4.5 For a finite pool, where there are C new members at age Xr

entering the fund at the beginning of every period and every new member in-

vests W0 upon entrance, given the withdrawal strategy W, the variance of the

retirement benefit received by a member at age Xr + t can be approximated by

(qXr+tWt(1 + r))2
[
φ (W)− (qXr+tWtθ (W))2 + qXr+tW

2
t (qXr+t − 1)ψ (W)

]
,

(4.16)

where θ (W), φ (W) and ψ (W) are defined as in Proposition 4.3.
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Proof. Substitute the approximations from Proposition 4.3 into equation (4.8).2

When the set of permissible initial wealth amount has more than one but finite

elements, similar calculations can also be done as with Proposition 4.4. In this

case, an analogue to equation (4.15) has to be satisfied.

Proposition 4.6 Suppose the set of permissible initial wealth amount is

{W0,1,W0,2, . . . ,W0,Z}, i.e., new members can invest one of the Z ∈ N amounts

upon retirement. At the beginning of every period, C new members at age Xr

enter the fund, with some constant Cz ∈ N members investing the amount W0,z

upon entrance for all z ∈ {1, 2, . . . , Z} and
∑Z

z=1Cz = C. Then, the withdrawal

strategy can be approximated by the set of Wt,z’s, t ∈ {1, 2, . . . , τ − 1} and

z ∈ {1, 2, . . . , Z}, with which

Wt−1,z(1 + r)−Wt,z

+ qXr+t−1Wt−1,z(1 + r) [1− qXr+t−1Wt−1,zϑ (W1,1, . . . ,Wτ−1,Z)]

=Wt,z(1 + r)−Wt+1,z

+ qXr+tWt,z(1 + r) [1− qXr+tWt,zϑ (W1,1, . . . ,Wτ−1,Z)] (4.17)

is satisfied for all t ∈ {1, 2, . . . , τ − 1} and z ∈ {1, 2, . . . , Z}, where Wτ,z = 0 for

all z ∈ {1, 2, . . . , Z} and

ϑ (W1,1, . . . ,Wτ−1,Z) =
1

µ(z)

+
σ2
(z)

µ3
(z)

, (4.18)

with

µ(z) =
Z∑
z=1

Cz

τ−1∑
n=0

qXr+nWn,z(npXr),

σ2
(z) =

Z∑
z=1

Cz

τ−1∑
n=1

(qXr+nWn,z)
2 (npXr)(1− npXr).

Proof. Denote by Lt,z, t ∈ {0, 1, . . . , τ − 1} and z ∈ {1, 2, . . . , Z}, the number of

members at age Xr + t in the fund, who invested the amount W0,z upon their

entrance. We have L0,z = Cz and Lt,z random for t ∈ {1, 2, . . . , τ − 1} and

z ∈ {1, 2, . . . , Z}.
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Analogue to discussion in the proof of Proposition 4.1, Lt,z follows Bin(Cz, tpXr)

for all t ∈ {1, 2, . . . , τ − 1} and z ∈ {1, 2, . . . , Z}.

Denote by G∗t,z the random survival gain for a member at age Xr+t, who invested

W0,z upon entrance. For all t ∈ {0, 1, . . . , τ − 1}, the expectation of G∗t,z is

E
(
G∗t,z

)
=E

[
E
[
G∗t,z

∣∣L1, L2, . . . , Lτ−1
]]

=E

[
qXr+t−1Wt−1,z(1 + r)

(
1− qXr+t−1Wt−1,z(1 + r)∑Z

z=1

∑τ−1
n=0 qXr+nWn,z(1 + r)Ln,z

)]

=qXr+t−1Wt−1,z(1 + r)

[
1− qXr+t−1Wt−1,z · E

[
1∑Z

z=1

∑τ−1
n=0 qXr+nWn,zLn,z

]]
.

(4.19)

Denote by Y(z) :
∑Z

z=1

∑τ−1
n=0 qXr+nWn,zLn,z, then E

(
Y(z)
)

= µ(z) and Var
(
Y(z)
)

=

σ2
(z). Using Taylor approximation expanding up to second order (refer to proof

of Proposition 4.3 for details), we obtain

E

[
1∑Z

z=1

∑τ−1
n=0 qXr+nWn,zLn,z

]
≈ ϑ (W1,1, . . . ,Wτ−1,Z) , (4.20)

where ϑ (W1,1, . . . ,Wτ−1,Z) is defined as in equation (4.18). Now we want to solve

for the set of remaining wealth in fund w.r.t. age for each of the Z groups, that

is, the Wt,z’s for all t ∈ {1, 2, . . . , τ − 1} and z ∈ {1, 2, . . . , Z}, such that

Wt−1,z(1 + r)−Wt,z + E[G∗t,z] = Wt(1 + r)−Wt+1 + E[G∗t+1,z] (4.21)

holds for all t ∈ {1, 2, . . . , τ − 1} and z ∈ {1, 2, . . . , Z}. Substituting approxima-

tion (4.20) and equation (4.19) into equation (4.21) gives the proposition. 2

Observe that Proposition 4.6 suggests a system of τ −1×Z non-linear equations

with the same number of unknowns, which can again be solved numerically.

The variance of the retirement benefit for each of the Z groups under the setting

in Proposition 4.6 can be easily derived by extending Propositions 4.2 and 4.3

likewise, which we leave out here.
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4.4 Numerical Illustrations

We continue to take Germany as our illustrative country. The retirement age is

set as Xr = 65, which is the official retirement age in the country until 20113, and

the limiting age is Xlim = 110, which is the oldest age with data available on the

HMD, hence τ = 110− 65 = 45. The constant risk-free rate is fixed at r = 2%.

The initial investment amount is W0 = 500000 unless otherwise specified. For

the mortality model we continue to employ the Gompertz model parametrized

in Section 3.3.1.

4.4.1 Infinite Pool

With an infinite pool, the yearly constant benefit under the constructed with-

drawal strategy given W0 = 500000 is 31464.91.

The evolutions of the wealth in fund and the withdrawal amount are the primary

focus. Equation (4.2) is solved and the two quantities are depicted respectively

in Figure 4.2 and Figure 4.3.
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Figure 4.2: Evolution of remaining wealth in fund, W0 = 500000.

3The retirement age in Germany has been gradually increasing since 2012 until reaching
67 in 2029. To save us from the trouble of a fractional retirement age we adopt the integer
retirement age before this transition period.
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Figure 4.3: Withdrawals with respect to time, W0 = 500000.

The wealth amount in fund is decreasing quite steadily, although not exactly lin-

early. The trend of the withdrawals has an interesting shape: it decreases steadily

with age until the advanced age 105, then increases sharply. The decreasing part

is easy to comprehend, as a member grows older and so her mortality rate in-

creases, she obtains more survival gain from the fund, less withdrawal is needed

to make up the same retirement benefit amount. However, at very advanced

ages, the withdrawal has to be increased, because at this stage, there is little

wealth remaining in the fund and the amount of survival gain attracted is lim-

ited despite the individual’s high mortality rate. Increased withdrawal is needed

in order that the constant benefit payment can be sustained. This can be better

understood from Figure 4.4, in which the evolution of the composition of the

benefit payments w.r.t. age is displayed and a drop in survival gain at the very

advanced ages is shown.

A comparison between the payments from the annuity overlay fund with infinite

members and that from an actuarially fair traditional annuity is made. Equation

(4.2) is solved with various values of initial wealth amounts W0, and the annual

constant benefits under respective W0’s are computed. The result is sketched in

Figure 4.5. On the other hand, the constant benefits that an individual would

receive if the same wealth amounts are instead invested into a traditional annuity

are calculated, which is done by dividing the wealth amounts by the annuity

factor of an actuarially fair whole life annuity immediate offered to an insured at
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Figure 4.4: Composition of benefit payment with respect to age.
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Figure 4.5: Annual retirement benefit from the annuity overlay fund with infinite
members.
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age Xr = 65. The annuity factor, denoted by a65, is calculated by the formula

a65 =
45∑
t=1

(1 + r)−ttp65. (4.22)

Under our setting a65 = 15.5753. A direct comparison confirms that, the constant

annual benefit offered by the annuity overlay fund with infinite pool under the

constructed withdrawal strategy offers benefit amounts very close to that an

actuarially fair annuity does, with a percentage difference of −1.99% in all cases.

This difference arises from the fact that, with the annuity overlay fund, there

is still a small payment made to members upon their death (which we assumed

that this payment brings no value to the deceased members), whereas with an

annuity no payment is to be made upon death.

4.4.2 Finite Pool

With regard to a finite pool, we give numerical illustrations primarily focusing

on the simple case where the set of permissible initial investment amount is the

singleton {W0}.

Equation (4.15) is solved under various values of C. The amount of the constant

expected retirement benefit is given in Figure 4.6 and Table 4.1. Since the

expected rate of survival gain increases with the pool size, so does the expected

retirement benefit. It is found that, a pool formed by constantly allowing a

relatively small number of C new retirees entering the pool already suffices to

provide an expected retirement benefit that is comparable to that from an infinite

pool. For instance, the expected survival gain attains 99.931% of that from an

C 10 25 50 100 300

Expected
benefit

31410.25 31443.13 31454.04 31459.48 31463.10

Percentage
comparing to
infinite pool

99.826% 99.931% 99.965% 99.983% 99.994%

Table 4.1: Comparison on expected benefit from finite and infinite pool.

infinite pool already with C = 25. A level as high as 99.994% is reached when

C is large equal to 300.
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Figure 4.6: Expected annual retirement benefit in relation to C, W0 = 500000.
The gray dashed line indicates the benefit amount in the limiting case of an
infinite pool.

The wealth in fund and the withdrawal amount w.r.t. age is compared to that

with an infinite pool. The percentage differences for the two quantities are dis-

played respectively in Figures 4.7 and 4.8.

Referring to Figure 4.7, it is found that the remaining wealth in fund with a

finite pool is always higher than that with an infinite pool. The smaller C is,

corresponding to a smaller pool, the more wealth should be remained in the fund.

The percentage difference is increasing with age for most of the time. Only after

the very late age of 102 (t = 37), the percentage increase starts diminishing,

until the remaining wealth finally drops to zero at the limiting age regardless

of the pool size. The higher wealth amount needed in the fund is due to the

fact that, comparing to an infinite pool, the expected rate of survival gain with

a finite pool is always lower, more wealth has to stay in the fund to attract a

comparable amount of survival gain. Meanwhile, note the small scale of the y-

axis in the graph. Already with a small pool formed by C = 10, the percentage

difference is at all time smaller than 1%. With C = 300 new members entering

the fund at each period, the percentage difference is hardly observable from the

graph.

In order that the wealth amount in fund is at all time higher, withdrawals have

60



4 Application in Retirement Aspect Numerical Illustrations

0 10 20 30 40

t

P
er

ce
nt

ag
e 

di
ffe

re
nc

e

0%

0.5%

1%

1.5%

C

5
10
25
50
100
300

Figure 4.7: Percentage change in wealth in fund comparing to an infinite pool.

to be deferred. See Figure 4.8. The withdrawal amount is first reduced at the

younger stage, and is then increased at the older stage. The smaller the pool is,

the more the withdrawals should be deferred, so that more wealth remains in the

fund to attract survival gain, which is seen from the larger negative percentage

change at the young ages and larger positive percentage change at the advanced

ages for smaller C. Relative to an infinite pool, the withdrawal amount increases

with age for most of the time, corresponding to that relatively more wealth can

be taken out from the fund as the expected survival gain increases. In the last

few years, the percentage difference falls again. At this stage, the survival gain

attracted drops due to the little wealth in fund, the portion of the retirement

benefit contributed from the withdrawals must be increased again (refer again

to Figure 4.3 and 4.4 and the discussion therein), the relative difference to the

limiting case hence also reduces.

The coefficient of variation (CV) of the benefit payment for a member at age

Xr + t, t = 1, 2, . . . , τ is computed under various values of C with the formula

CVt =
Standard Deviation of Survival Gain at age Xr + t

Expected Retirement Benefit at age Xr + t
, (4.23)
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Figure 4.8: Percentage change in withdrawal amounts comparing to an infinite
pool.

the result of which is given in Figure 4.9.4 The CV is always increasing with

age except after the advanced age 104 (t = 39). This is because the uncertainty

on the retirement benefit amount only comes from the random survival gain but

not from the predetermined withdrawals. Until the last several years before the

limiting age, the survival gain constitutes an increasing portion of the retirement

benefit as a member ages, leading to a higher level of uncertainty w.r.t. age. Yet

in the last years, the portion contributed from the random survival gain drops,

therefore the uncertainty on the total benefit also reduces. On the other hand,

notice that C has a significant impact on the CV, especially for the old members.

For instance, when C is small equal to 10, the CV for a member aged 105 could

reach as high as 0.3, implying a 30% dispersion for each unit retirement benefit.

The CV drops quickly as C grows from such small value. For C over 150, the

CV becomes relatively stable, and for C over 250, the CV remains below 0.06

for all members.

A stochastic simulation is performed to visualize the variation in the actual

retirement benefit amounts. Fixing C, the number of surviving members at

4The CV instead of the variance is examined, as it is here a more indicative statistic than
the variance, considering that the expectation of payment is not the same for different values
of C.
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Figure 4.9: Coefficient of variation of benefit payments in relation to age and
pool size.

each age at each time point is modelled according to the survival probability

calculated from the fitted mortality curve. The retirement benefit amounts are

then calculated under the withdrawal strategy set from the above calculation

together with the modelled evolution of number of fund members. Figure 4.10

is the result when C is fixed respectively at 30 and 300, with 2000 simulations

being run for each case. Obviously with a larger C, the fluctuation of the benefit

amount around the expectation reduces. For C = 30, the maximum variation

occurs at ages 103 and 104, where the 95th and 5th percentiles correspond to

roughly +30% and −27% respectively from the expected value. For C = 300, the

maximum deviation reduces to around ±9%. As remark, the simulation result

that the expected retirement benefit is almost constant w.r.t. age supports that

the approximations employed (given in Proposition 4.3) are valid practically.

As reference, an example for the case where the set of permissible initial in-

vestment amount has more than one element is provided. The set is taken as

{W0,1 = 500000,W0,2 = 250000}, equation (4.17) is solved under various values

of C, with C1 = C2 = 0.5C. The effect on the members investing 500000 is

illustrated in Figure 4.11. Now with half of the members investing less into the
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(a) C = 30.
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(b) C = 300.

Figure 4.10: Simulation results for the retirement benefit w.r.t. age. Circle marks
are the mean payments, upper (lower) cross marks are the 95th (5th) percentile
of the payments, black line is the theoretical expected value (corresponding to
Figure 4.6).
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All new members invest 500000
50% new members invest 500000, other 50% invest 250000   

Figure 4.11: Effect on expected benefit for a member investing an initial wealth
of 500000, when 50% of the members invest 50% less upon entering the fund.
The gray dashed line indicates the benefit amount in the limiting case of an
infinite pool.
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fund upon entrance, those who invested 500000 suffer from a reduced expected

retirement benefit. When C is small being below 50, the drop is obvious. As C

increases and hence the pool is enlarged, the difference between the two cases

diminishes. For C over roughly over 150, the effect becomes unobservable from

the graph, where the expected benefit in either case is very close to that from an

infinite pool. Clearly the converse holds also true, that is, for certain member,

when some other members invest more into the fund, the member benefits from

a higher expected retirement benefit.

4.4.3 Effect of Change in Mortality Rate

Until now, all calculations are done based on the assumption that the one-year

death probability w.r.t. age does not change throughout time. In reality this

assumption rarely holds. Here we investigate the effect of change in the mortality

rate on the expected retirement benefit amount.

For this, a mortality curve is fitted to the German population data from 2007

and the withdrawal strategy is set according to the fitted one-year mortality

rate w.r.t. age back then. Employing the same parametrization method as

in Section 3.3.1, the parameters for the 2007 mortality curve are m = 87.16

and b = 9.01. Comparing with the parameters in 2017 where m = 88.13 and

b = 8.66, the modal age of death has increased during the period, reflecting a

longer life expectancy, and the dispersion of death time has decreased, implying

individuals are passing away at a time around the modal age more concentratedly.

These can be related to the phenomenons termed as “right-shift mortality” and

“concentration” of the human mortality evolution (see e.g. Börger et al. (2018)

for a very good summary and categorization of the various types of mortality

evolution patterns).

Now suppose the population mortality level has changed from that in 2007 to

the that in 2017. The effect on the expected retirement benefit from the 10-year

change in mortality level is plotted in Figure 4.12. Observe that the expected

retirement benefit is no longer constant in time after a change in the mortality

level. The expected retirement benefit becomes lower for most of the time, since

with an improved mortality level, members perish at a later age in expectation.

As older members have less wealth in the fund than the younger ones, less money

passes into the notional mortality account and less survival gain is awarded to the
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surviving members. Except at the very advanced ages, the expected retirement

benefit becomes higher, this is explained by the higher mortality rate for the

very advanced ages from the mortality level in 2017 than that in 2007, more

survival gain is hence attracted to the very old members. Note that a larger pool

size, formed by allowing more new entrants at each period, cannot remedy the

distortion, as a change in the population mortality level is systemic.

0 10 20 30 40

31
00

0
31

50
0

32
00

0
32

50
0

33
00

0

t

E
xp

ec
te

d 
an

nu
al

 r
et

ire
m

en
t b

en
ef

it

Force of mortality

2007
2017

C

5
10
25
50
300

Figure 4.12: Effect of change in mortality rate with time.

In case of an infinite pool, this problem can be rectified. Referring back to equa-

tion (4.1) or (4.2), under an infinite pool the withdrawal strategy of a member is

independent of other members. When there is a future change in the mortality

level of a member, given that the change can be correctly predicted, equation

(4.2) can be solved simply by substituting the updated mortality rate at each

future time point.

We illustrate this through a backtest. The Gompetz model is fitted to the Ger-

man population data for each of the years from 1973 to 2017, a total of 45 years

corresponding to the assumed maximum retirement duration. In Figure 4.13 are

the fitted model parameters throughout the period.

Next, the one-year mortality rate of an aged 65 is taken from the model fitted to

1973 data, that of an aged 66 taken from the 1974 model and so on, obtaining

the stochastic mortality rate of an individual aged 65 to 109 in years 1973 to
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Figure 4.13: Evolution of mortality model parameters from 1973 to 2017.

2017. Equation (4.2) is then solved by substituting these values of the mortality

rate, the result obtained is the constant benefit with the change in mortality

level being taken into consideration.

Figure 4.14 shows the effect caused on the remaining wealth in fund and with-

drawal amounts w.r.t. age. With the stochastic change in mortality level, a

member should withdrawal less at younger ages but more at the advanced ages,

in other words deferring the withdrawals, so that the resulting remaining wealth

in fund is always higher.

Figure 4.15 gives the result on the new annual benefit amount together with

comparison with other scenarios. Comparing to the case that there is no change

in the mortality rate w.r.t. age throughout the period (circle marks), the con-

stant benefit becomes lower when the mortality rate changes stochastically with

model parameters evolving as in Figure 4.13 (cross marks). The lowered constant

benefit amount is the consequence of the improved population mortality level,

as reflected by the increasing trend of m displayed in Figure 4.13a, less young

members but more old members perish as time evolves, hence less money enters

the notional mortality account and less survival gain is received by a surviving

member. On the other hand, when the stochastic change in the mortality rate

takes place but is not being considered during the establishment of the with-

drawal strategy, a member would withdraw too much at each time point, the

resulting annual benefit would no longer be constant and be less than expected
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Figure 4.14: Effect on the evolution of the remaining wealth in fund and the
withdrawal amount for an infinite pool, when stochastic change in mortality rate
is taken into consideration during calculation of the withdrawal strategy.

(triangle marks).

The resulting new annual constant benefit is again comparable to a traditional

annuity, where the future change in mortality level is incorporated into the cal-

culation of the annuity price, i.e. adjusting np65 in equation (4.22) accordingly.

Needless to say, unlike in the backtest above, in real world the future change

in population mortality level is uncertain. In practice, to forecast the future

population mortality level, stochastic mortality models are fitted and projections

into future are made. When the projected future mortality rate is used for

calculating the withdrawal strategy, there exists also the risk on the accuracy of

the projection, which is also born by the fund members.

In case of a finite pool, similar adaptation is not possible. Recall that with

a finite pool, each member’s survival gain is determined also by the wealth-

mortality profile of all other members, meaning the withdrawal strategy of a

cohort depends on that of the other cohorts. Even leaving out the uncertainty

in the change in mortality level, the different evolution of the mortality level for

each cohort implies the withdrawal strategy for each cohort must be different.

Therefore, the calculations proposed in Section 4.3.2, which is done by implicitly

equating the future remaining wealth of one cohort to the current remaining
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Figure 4.15: Annual benefit in case of an infinite pool, when mortality rate
changes stochastically as from 1973 to 2017.

wealth of another cohort, cannot be valid.

4.5 Discussion

The contents in this chapter have demonstrated that, the annuity overlay fund

can be operated in a restrictive way, so as to achieve the goal of offering fund

members a stream of payment that is constant in expectation over time.

Comparing to a traditional annuity, the annual expected payout from the annuity

overlay fund is slightly lower. With a pool of infinite members, where there is no

uncertainty in the actual payment amount, our numerical illustration has shown

a percentage drop of roughly 1.99% in the retirement benefit from the annuity

overlay fund relative to that from an annuity. For a pool with finite members,

the members also bear the uncertainty in the actual benefit amount. Further

inspection on the figures has suggested that, for a finite pool, the percentage

drop in the expected payment from the fund relative to the guaranteed payment

from an annuity diminishes to the same magnitude of 1.99% (rounded to two
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decimal places) already if the fund admits over 175 new retirees yearly. This is

a number that is not hard to achieve in practice.

On the other hand, since there is no risk born by the insurer to run the annuity

overlay fund, unlike with an annuity, no safety loading is to be added to the

price of the fund by the insurer. For an annuity, the safety loadings required

by an insurer is usually higher than the percentage suggested in the previous

paragraph. For instance, Chen et al. (2019) calculated the risk loadings of an

annuity to be as large as 4.84% based on the Solvency II requirements. Hence,

after taking the loadings into consideration, the annuity overlay fund is likely

to offer an expected benefit being higher than the guaranteed benefit from a

traditional annuity. In this case, the annuity overlay fund could be preferred

over a traditional annuity, if retirees are willing to bear some level of uncertainty

in the retirement benefit payments.

The main advantage of applying the annuity overlay fund in retirement aspect is

its feature of being a periodically open fund, which is enabled by the periodically-

actuarially-fair property. By permitting new retirees to enter the fund at the

beginning of each period, the pool size and thus the variation in payouts can

remain relatively stable over time. This is an advantage that product designs

requiring a closed pool cannot offer. For example, the tontine which is heavily

studied in recent years works only with a closed pool. In terms of retirement

application, tontine participants face a greater variation in the benefit amounts

to be obtained as they approach advanced ages, when a large portion of members

have perished and the pool size becomes tiny (see e.g. Figure 2 in Chen et al.

(2019) for the variation of payments from tontine).

An issue of the proposed operation of the annuity overlay fund is that, with a

finite pool, it is not possible to incorporate a stochastic mortality rate in the

computation of the withdrawal strategy. Nevertheless, our numerical illustra-

tions have demonstrated that, adaptation can be made in case of an infinite

pool. Consider also the result that, the expected benefit from a finite pool with

merely hundreds of new members yearly already resembles that from an infinite

pool. It is therefore proposed that, under the setting of stochastic mortality, the

withdrawal strategy calculated from an infinite pool can be used to approximate

that for a finite pool with sufficiently many entrants in each period. A more

precise elaboration on this possibility, together with investigation on the level of

variation faced by members in this case, is left for future research.
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4 Application in Retirement Aspect Discussion

It is worth remarking that, in order to apply the annuity overlay fund, it is very

important to correctly assign the mortality rate of all fund members with respect

to age. An inaccurate assignment of mortality rate would result in a stream of

retirement benefit that cannot be constant in expectation over time, analogous to

the triangle marks displayed in Figure 4.15. The issue of uncertainty in humans’

future mortality rate and its forecasting are an extended research area, which is

beyond the scope of the thesis and is not covered here.
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Chapter 5

Conclusion

This thesis has contributed in three aspects.

First, a discrete-time model of the annuity overlay fund has been specified. A

discrete-time model is often preferred over a continuous-time model by insurance

companies for use in practice, the model established in the thesis hence helps

narrow down the gap between theoretical investigation and practical application

of the annuity overlay fund. Moreover, we have expressed the fund in a slightly

different manner comparing to the original design in Donnelly et al. (2014), where

the mathematical formulas are simplified and can be more easily comprehended.

Second, analyses based on the risk and return features of the annuity overlay

fund have been conducted. By considering the actuarial gain upon survival until

the terminal time, it has been found that, older members as well as members

who invest less into the fund face a risk-return trade-off at a larger magnitude

through engaging in the mortality risk pooling process. The expected change

in utility obtained through participating in the risk pooling has been taken as

the measure of the fund’s attractiveness to an individual, and a framework of

analysis has been suggested for examining the relative attractiveness of the fund

for members with different wealth-mortality profiles and attitude towards risk.

Lastly, a method to operate the annuity overlay fund has been proposed, with

which a stream of payment being constant in expectation over time can be pro-

vided to surviving fund members, given that members’ mortality rate with re-

spect to age does not change throughout time. This offers individuals another

option for pooling mortality risks with others and we advocate that, this can

be a new possibility in the retirement aspect. Further research in this regard is

encouraged for investigating the practicability of the proposal.
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Appendix A

Notations

Notation Meaning

Model

T Terminal time

M Number of members in the fund at incep-

tion (time 0)

W
(k)
0 Wealth invested from member k at time 0

W
(k)
T− Wealth of member k at time T before re-

ceiving the actuarial gain

W
(k)
T Wealth of member k at time T after receiv-

ing the actuarial gain

TQ
(k)
0 Death probability for member k in the time

interval [0, T ]

N
(k)
T Survival status of member k at time T , 0

means alive and 1 otherwise

UT Total amount flown into the notional mor-

tality account until time T

G
(k)
T Actuarial gain for member k at time T

R
(k)
T Return from financial market for member

k at time T

Chapter 3

uk(W ) Utility for member k from some wealth W

Ak(W ) Absolute risk aversion coefficient for mem-

ber k with some wealth W

Chapter 4

r risk-free rate

qX One-year death probability for an individ-

ual at age X

tpX Probability for an individual at age X to

survive the next t years
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Xr Retirement age

Xlim Limiting age

t Duration that a retiree has remained in the

fund

τ(= Xlim −Xr) Maximum duration that a retiree remains

in the fund

Z Number of elements in the set of permissi-

ble initial wealth amount

Cz(= C if Z = 1) Number of members who are admitted into

the fund at the beginning of each period,

whose initial investment is the z-th ele-

ment in the set of permissible initial wealth

amount

Wt,z(= Wt if Z = 1) Remaining wealth in the fund for a member

at age Xr+t, whose initial investment upon

entrance was the z-th element in the set of

permissible initial wealth amount

Dt,z(= Dt if Z = 1) Withdrawal amount for a member at age

Xr + t, whose initial investment upon en-

trance was the z-th element in the set of

permissible initial wealth amount

Lt,z(= Lt if Z = 1) Number of members in the fund who are at

age Xr + t, whose initial investment upon

entrance was the z-th element in the set of

permissible initial wealth amount

77



Appendix B

Proof for equation (2.5)

Consider an arbitrary member k of the fund at time 0. The probability of the

member perishing during the interval [0, T ] is TQ
(k)
0 . Clearly,

E
(
N

(k)
T

∣∣∣FT−) =TQ
(k)
0 · 1 + (1− TQ

(k)
0 ) · 0 = TQ

(k)
0 .

Conditional on the information at time 0, the expected amount of money that

flows into the notional mortality account at time T due to deaths in the time

interval [0, T ] is

E
(
UT

∣∣∣FT−) =
M∑
m=1

W
(m)
T− E

(
N

(m)
T

)
=

M∑
m=1

W
(m)
T− TQ

(m)
0 .

Next, the actuarial gain at time T , G
(k)
T , given by equation (2.3) can be written

in the compact form

G
(k)
T =

TQ
(k)
0 W

(k)
T−∑M

m=1 TQ
(m)
0 W

(m)
T−

UT −W (k)
T−N

(k)
T .

Now

E
(
G

(k)
T

∣∣∣FT−)
=E

(
TQ

(k)
0 W

(k)
T−∑M

m=1 TQ
(m)
0 W

(m)
T−

UT −W (k)
T−N

(k)
T

∣∣∣∣∣FT−
)

=
TQ

(k)
0 W

(k)
T−∑M

m=1 TQ
(m)
0 W

(m)
T−

E (UT |FT−)−W (k)
T−E

(
N

(k)
T

∣∣∣FT−)
=TQ

(k)
0 W

(k)
T− − TQ

(k)
0 W

(k)
T−

=0.
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Appendix C

Proof for equation (3.1)

Consider an arbitrary member k, given that she survives the time interval [0, T ],

that is, N
(k)
T = 0, we have

E
(
N

(k)
T

∣∣∣FT−, N (k)
T = 0

)
= 0,

and

E
(
UT

∣∣∣FT−, N (k)
T = 0

)
=

M∑
m=1

TQ
(m)
0 W

(m)
T− − TQ

(k)
0 W

(k)
T−.

It follows that, the expected actuarial gain for the member conditional on her

survival is

E
(
G

(k)
T

∣∣∣FT−, N (k)
T = 0

)
=E

(
TQ

(k)
0 W

(k)
T−∑M

m=1 TQ
(m)
0 W

(m)
T−

UT −W (k)
T−N

(k)
T

∣∣∣∣∣FT−, N (k)
T = 0

)

=
TQ

(k)
0 W

(k)
T−∑M

m=1 TQ
(m)
0 W

(m)
T−

E
(
UT

∣∣∣FT−, N (k)
T = 0

)
−W (k)

T−E
(
N

(k)
T

∣∣∣FT−, N (k)
T = 0

)
=

TQ
(k)
0 W

(k)
T−∑M

m=1 TQ
(m)
0 W

(m)
T−

(
M∑
m=1

TQ
(m)
0 W

(m)
T− − TQ

(k)
0 W

(k)
T−

)
−W (k)

T− · 0

=TQ
(k)
0 W

(k)
T−

(
1− TQ

(k)
0 W

(k)
T−∑M

m=1 TQ
(m)
0 W

(m)
T−

)
.
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Appendix D

Proof for equation (3.2)

As N
(k)
T = 0, we have

Var
(
N

(k)
T

∣∣∣FT−, N (k)
T = 0

)
= 0

and

Cov
(
UT , N

(k)
T

∣∣∣FT−, N (k)
T = 0

)
= 0.

Conditional on that the member k survives the time interval [0, T ], we have

Var
(
UT

∣∣∣FT−, N (k)
T = 0

)
=

M∑
m=1

(
W

(m)
T−

)2
TQ

(m)
0 −

(
W

(k)
T−

)2
TQ

(k)
0

=
M∑

m=1,
m 6=k

(
W

(m)
T−

)2
TQ

(m)
0 .

Therefore,

Var
(
G

(k)
T

∣∣∣FT−, N (k)
T = 0

)
=Var

(
TQ

(k)
0 W

(k)
T−∑M

m=1 TQ
(m)
0 W

(m)
T−

UT −W (k)
T−N

(k)
T

∣∣∣∣∣FT−, N (k)
T = 0

)

=
TQ

(k)
0 W

(k)
T−∑M

m=1 TQ
(m)
0 W

(m)
T−

Var
(
UT |FT−, N (k)

T = 0
)
−W (k)

T−Var
(
N

(k)
T

∣∣∣FT−, N (k)
T = 0

)

=
TQ

(k)
0 W

(k)
T−∑M

m=1 TQ
(m)
0 W

(m)
T−

 M∑
m=1,
m6=k

(
W

(m)
T−

)2
TQ

(m)
0

 .
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